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Unlike a bacterium, which generally consists of a single intracellular compart-
ment surrounded by a plasma membrane, a eukaryotic cell is elaborately sub-
divided into functionally distinct, membrane-enclosed compartments. Each 
compartment, or organelle, contains its own characteristic set of enzymes and 
other specialized molecules, and complex distribution systems transport specific 
products from one compartment to another. To understand the eukaryotic cell, it 
is essential to know how the cell creates and maintains these compartments, what 
occurs in each of them, and how molecules move between them.

Proteins confer upon each compartment its characteristic structural and 
functional properties. They catalyze the reactions that occur there and selectively 
transport small molecules into and out of the compartment. For membrane-en-
closed organelles in the cytoplasm, proteins also serve as organelle-specific sur-
face markers that direct new deliveries of proteins and lipids to the appropriate 
organelle. 

An animal cell contains about 10 billion (1010) protein molecules of perhaps 
10,000 kinds, and the synthesis of almost all of them begins in the cytosol, the 
space of the cytoplasm outside the membrane-enclosed organelles. Each newly 
synthesized protein is then delivered specifically to the organelle that requires it. 
The intracellular transport of proteins is the central theme of both this chapter 
and the next. By tracing the protein traffic from one compartment to another, one 
can begin to make sense of the otherwise bewildering maze of intracellular mem-
branes. 

The Compartmentalization of Cells
In this brief overview of the compartments of the cell and the relationships 
between them, we organize the organelles conceptually into a small number of 
discrete families, discuss how proteins are directed to specific organelles, and 
explain how proteins cross organelle membranes.

All Eukaryotic Cells Have the Same Basic Set of Membrane-
enclosed Organelles
Many vital biochemical processes take place in membranes or on their surfaces. 
Membrane-bound enzymes, for example, catalyze lipid metabolism; and oxida-
tive phosphorylation and photosynthesis both require a membrane to couple the 
transport of H+ to the synthesis of ATP. In addition to providing increased mem-
brane area to host biochemical reactions, intracellular membrane systems form 
enclosed compartments that are separate from the cytosol, thus creating function-
ally specialized aqueous spaces within the cell. In these spaces, subsets of mol-
ecules (proteins, reactants, ions) are concentrated to optimize the biochemical 
reactions in which they participate. Because the lipid bilayer of cell membranes is 
impermeable to most hydrophilic molecules, the membrane of an organelle must 
contain membrane transport proteins to import and export specific metabolites. 
Each organelle membrane must also have a mechanism for importing, and incor-
porating into the organelle, the specific proteins that make the organelle unique.
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Figure 12–1 illustrates the major intracellular compartments common to 
eukaryotic cells. The nucleus contains the genome (aside from mitochondrial and 
chloroplast DNA), and it is the principal site of DNA and RNA synthesis. The sur-
rounding cytoplasm consists of the cytosol and the cytoplasmic organelles sus-
pended in it. The cytosol constitutes a little more than half the total volume of 
the cell, and it is the main site of protein synthesis and degradation. It also per-
forms most of the cell’s intermediary metabolism—that is, the many reactions 
that degrade some small molecules and synthesize others to provide the building 
blocks for macromolecules (discussed in Chapter 2).

About half the total area of membrane in a eukaryotic cell encloses the laby-
rinthine spaces of the endoplasmic reticulum (ER). The rough ER has many ribo-
somes bound to its cytosolic surface. Ribosomes are organelles that are not mem-
brane-enclosed; they synthesize both soluble and integral membrane proteins, 
most of which are destined either for secretion to the cell exterior or for other 
organelles. We shall see that, whereas proteins are transported into other mem-
brane-enclosed organelles only after their synthesis is complete, they are trans-
ported into the ER as they are synthesized. This explains why the ER membrane is 
unique in having ribosomes tethered to it. The ER also produces most of the lipid 
for the rest of the cell and functions as a store for Ca2+ ions. Regions of the ER that 
lack bound ribosomes are called smooth ER. The ER sends many of its proteins 
and lipids to the Golgi apparatus, which often consists of organized stacks of disc-
like compartments called Golgi cisternae. The Golgi apparatus receives lipids and 
proteins from the ER and dispatches them to various destinations, usually cova-
lently modifying them en route. 

Mitochondria and chloroplasts generate most of the ATP that cells use to drive 
reactions requiring an input of free energy; chloroplasts are a specialized version 
of plastids (present in plants, algae, and some protozoa), which can also have 
other functions, such as the storage of food or pigment molecules. Lysosomes con-
tain digestive enzymes that degrade defunct intracellular organelles, as well as 
macromolecules and particles taken in from outside the cell by endocytosis. On 
the way to lysosomes, endocytosed material must first pass through a series of 
organelles called endosomes. Finally, peroxisomes are small vesicular compart-
ments that contain enzymes used in various oxidative reactions.

In general, each membrane-enclosed organelle performs the same set of basic 
functions in all cell types. But to serve the specialized functions of cells, these 
organelles vary in abundance and can have additional properties that differ from 
cell type to cell type.

On average, the membrane-enclosed compartments together occupy nearly 
half the volume of a cell (Table 12–1), and a large amount of intracellular mem-
brane is required to make them. In liver and pancreatic cells, for example, the 

MBoC6 m12.01/12.01

15 µm

mitochondrion

Golgi
apparatus

endoplasmic
reticulum with

membrane-bound
polyribosomes

nucleus plasma membrane

free ribosomes

peroxisome

cytosol

lysosome

endosome

Figure 12–1 The major intracellular 
compartments of an animal cell. The 
cytosol (gray), endoplasmic reticulum, 
Golgi apparatus, nucleus, mitochondrion, 
endosome, lysosome, and peroxisome are 
distinct compartments isolated from the 
rest of the cell by at least one selectively 
permeable membrane (see Movie 9.2). 
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endoplasmic reticulum has a total membrane surface area that is, respectively, 
25 times and 12 times that of the plasma membrane (Table 12–2). The mem-
brane-enclosed organelles are packed tightly in the cytoplasm, and, in terms of 
area and mass, the plasma membrane is only a minor membrane in most eukary-
otic cells (Figure 12–2).

The abundance and shape of membrane-enclosed organelles are regulated to 
meet the needs of the cell. This is particularly apparent in cells that are highly spe-
cialized and therefore disproportionately rely on specific organelles. Plasma cells, 
for example, which secrete their own weight every day in antibody molecules into 
the bloodstream, contain vastly amplified amounts of rough ER, which is found 
in large, flat sheets. Cells that specialize in lipid synthesis also expand their ER, 
but in this case the organelle forms a network of convoluted tubules. Moreover, 
membrane-enclosed organelles are often found in characteristic positions in the 
cytoplasm. In most cells, for example, the Golgi apparatus is located close to the 
nucleus, whereas the network of ER tubules extends from the nucleus throughout 
the entire cytosol. These characteristic distributions depend on interactions of the 
organelles with the cytoskeleton. The localization of both the ER and the Golgi 
apparatus, for instance, depends on an intact microtubule array; if the microtu-
bules are experimentally depolymerized with a drug, the Golgi apparatus frag-
ments and disperses throughout the cell, and the ER network collapses toward the 
cell center (discussed in Chapter 16). The size, shape, composition, and location 
are all important and regulated features of these organelles that ultimately con-
tribute to the organelle’s function.

Evolutionary Origins May Help Explain the Topological 
Relationships of Organelles
To understand the relationships between the compartments of the cell, it is help-
ful to consider how they might have evolved. The precursors of the first eukaryotic 
cells are thought to have been relatively simple cells that—like most bacterial and 
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Table 12–1 Relative Volumes 
Occupied by the Major 
Intracellular Compartments in a 
Liver Cell (Hepatocyte)

Intracellular 
compartment 

Percentage 
of total cell 

volume

Cytosol 54

Mitochondria 22

Rough ER 
cisternae

9

Smooth ER 
cisternae plus 
Golgi cisternae

6

Nucleus 6

Peroxisomes 1

Lysosomes 1

Endosomes 1

Table 12–2 Relative Amounts of Membrane Types in Two Kinds of Eukaryotic 
Cells

Membrane Type Percentage of total cell membrane

Liver hepatocyte* Pancreatic exocrine cell*

Plasma membrane 2 5

Rough ER membrane 35 60

Smooth ER membrane 16 <1

Golgi apparatus membrane 7 10

Mitochondria
   Outer membrane
   Inner membrane

7
32

4
17

Nucleus
   Inner membrane 0.2 0.7

Secretory vesicle membrane Not determined 3

Lysosome membrane 0.4 Not determined

Peroxisome membrane 0.4 Not determined

Endosome membrane 0.4 Not determined

*These two cells are of very different sizes: the average hepatocyte has a volume of about  
5000 μm3 compared with 1000 μm3 for the pancreatic exocrine cell. Total cell membrane areas 
are estimated at about 110,000 μm2 and 13,000 μm2, respectively.
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archaeal cells—have a plasma membrane but no internal membranes. The plasma 
membrane in such cells provides all membrane-dependent functions, including 
the pumping of ions, ATP synthesis, protein secretion, and lipid synthesis. Typ-
ical present-day eukaryotic cells are 10–30 times larger in linear dimension and 
1000–10,000 times greater in volume than a typical bacterium such as E. coli. The 
profusion of internal membranes can be regarded, in part, as an adaptation to 
this increase in size: the eukaryotic cell has a much smaller ratio of surface area to 
volume, and its plasma membrane therefore presumably has too small an area to 
sustain the many vital functions that membranes perform. The extensive internal 
membrane systems of a eukaryotic cell alleviate this problem. 

The evolution of internal membranes evidently went hand-in-hand with the 
specialization of membrane function. A hypothetical scheme for how the first 
eukaryotic cells, with a nucleus and ER, might have evolved by the invagination 
and pinching off of the plasma membrane of an ancestral cell is illustrated in 
Figure 12–3.This process would create membrane-enclosed organelles with an 
interior or lumen that is topologically equivalent to the exterior of the cell. We 
shall see that this topological relationship holds for all of the organelles involved 
in the secretory and endocytic pathways, including the ER, Golgi apparatus, 
endosomes, lysosomes, and peroxisomes. We can therefore think of all of these 
organelles as members of the same topologically equivalent compartment. As we 
discuss in detail in the next chapter, their interiors communicate extensively with 
one another and with the outside of the cell via transport vesicles, which bud off 
from one organelle and fuse with another (Figure 12–4).

As described in Chapter 14, mitochondria and plastids differ from the other 
membrane-enclosed organelles because they contain their own genomes. The 
nature of these genomes, and the close resemblance of the proteins in these 
organelles to those in some present-day bacteria, strongly suggest that mito-
chondria and plastids evolved from bacteria that were engulfed by other cells 
with which they initially lived in symbiosis (see Figures 1–29 and 1–31): the inner 
membrane of mitochondria and plastids presumably corresponds to the original 
plasma membrane of the bacterium, while the lumen of these organelles evolved 
from the bacterial cytosol. Like the bacteria from which they were derived, 
both mitochondria and plastids are enclosed by a double membrane and they  
remain isolated from the extensive vesicular traffic that connects the interiors of 
most of the other membrane-enclosed organelles to each other and to the outside 
of the cell. 
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Figure 12–2 An electron micrograph 
of part of a liver cell seen in cross 
section. Examples of most of the major 
intracellular organelles are indicated. 
(Courtesy of Daniel S. Friend.)
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The evolutionary schemes just described group the intracellular compart-
ments in eukaryotic cells into four distinct families: (1) the nucleus and the cyto-
sol, which communicate with each other through nuclear pore complexes and are 
thus topologically continuous (although functionally distinct); (2) all organelles 
that function in the secretory and endocytic pathways—including the ER, Golgi 
apparatus, endosomes, and lysosomes, the numerous classes of transport inter-
mediates such as transport vesicles that move between them, and peroxisomes; 
(3) the mitochondria; and (4) the plastids (in plants only). 

Proteins Can Move Between Compartments in Different Ways
The synthesis of all proteins begins on ribosomes in the cytosol, except for the few 
that are synthesized on the ribosomes of mitochondria and plastids. Their sub-
sequent fate depends on their amino acid sequence, which can contain sorting 
signals that direct their delivery to locations outside the cytosol or to organelle 
surfaces. Some proteins do not have a sorting signal and consequently remain in 
the cytosol as permanent residents. Many others, however, have specific sorting 
signals that direct their transport from the cytosol into the nucleus, the ER, mito-
chondria, plastids, or peroxisomes; sorting signals can also direct the transport of 
proteins from the ER to other destinations in the cell.

THE COMPARTMENTALIZATION OF CELLS

Figure 12–3 One suggested pathway 
for the evolution of the eukaryotic 
cell and its internal membranes As 
discussed in Chapter 1, there is evidence 
that the nuclear genome of a eukaryotic 
cell evolved from an ancient archeaon. 
For example, clear homologs of actin, 
tubulin, histones, and the nuclear DNA 
replication system are found in archaea, 
but not in bacteria. Thus, it is now thought 
that the first eukaryotic cells arose when 
an ancient anaerobic archaeon joined 
forces with an aerobic bacterium roughly 
1.6 billion years ago. As indicated, the 
nuclear envelope may have originated from 
an invagination of the plasma membrane 
of this ancient archaeon—an invagination 
that protected its chromosome while still 
allowing access of the DNA to the cytosol 
(as required for DNA to direct protein 
synthesis). This envelope may have later 
pinched off completely from the plasma 
membrane, so as to produce a separate 
nuclear compartment surrounded by a 
double membrane. Because this double 
membrane is penetrated by nuclear pore 
complexes, the nuclear compartment is 
topologically equivalent to the cytosol. In 
contrast, the lumen of the ER is continuous 
with the space between the inner and outer 
nuclear membranes, and it is topologically 
equivalent to the extracellular space (see 
Figure 12–4). (Adapted from J. Martijn and 
T.J.G. Ettema, Biochem. Soc. Trans. 41: 
451–457, 2013.)
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To understand the general principles by which sorting signals operate, it is 
important to distinguish three fundamentally different ways by which proteins 
move from one compartment to another. These three mechanisms are described 
below, and the transport steps at which they operate are outlined in Figure 12–5. 
We discuss the first two mechanisms (gated transport and transmembrane trans-
port) in this chapter, and the third (vesicular transport, green arrows in Figure 
12–5) in Chapter 13.

1.	 In gated transport, proteins and RNA molecules move between the cytosol 
and the nucleus through nuclear pore complexes in the nuclear envelope. 
The nuclear pore complexes function as selective gates that support the 
active transport of specific macromolecules and macromolecular assem-
blies between the two topologically equivalent spaces, although they also 
allow free diffusion of smaller molecules. 

2.	 In protein translocation, transmembrane protein translocators directly 
transport specific proteins across a membrane from the cytosol into a 
space that is topologically distinct. The transported protein molecule usu-
ally must unfold to snake through the translocator. The initial transport 
of selected proteins from the cytosol into the ER lumen or mitochondria, 
for example, occurs in this way. Integral membrane proteins often use the 
same translocators but translocate only partially across the membrane, so 
that the protein becomes embedded in the lipid bilayer. 

3.	 In vesicular transport, membrane-enclosed transport intermediates—
which may be small, spherical transport vesicles or larger, irregularly 
shaped organelle fragments—ferry proteins from one topologically equiva-
lent compartment to another. The transport vesicles and fragments become 
loaded with a cargo of molecules derived from the lumen of one compart-
ment as they bud and pinch off from its membrane; they discharge their 
cargo into a second compartment by fusing with the membrane enclos-
ing that compartment (Figure 12–6). The transfer of soluble proteins from 
the ER to the Golgi apparatus, for example, occurs in this way. Because the 
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Figure 12–4 Topologically equivalent 
compartments in the secretory and 
endocytic pathways in a eukaryotic 
cell. Compartments are said to be 
topologically equivalent if they can 
communicate with one another, in the 
sense that molecules can get from one 
to the other without having to cross a 
membrane. Topologically equivalent spaces 
are shown in red. (A) Molecules can be 
carried from one compartment to another 
topologically equivalent compartment 
by vesicles that bud from one and fuse 
with the other. (B) In principle, cycles of 
membrane budding and fusion permit 
the lumen of any of the organelles shown 
to communicate with any other and with 
the cell exterior by means of transport 
vesicles. Blue arrows indicate the 
extensive outbound and inbound vesicular 
traffic (discussed in Chapter 13). Some 
organelles, most notably mitochondria and 
(in plant cells) plastids, do not take part in 
this communication and are isolated from 
the vesicular traffic between organelles 
shown here.
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Figure 12–5 A simplified “roadmap” of protein traffic within a 
eukaryotic cell. Proteins can move from one compartment to another 
by gated transport (red), protein translocation (blue), or vesicular transport 
(green). The sorting signals that direct a given protein’s movement through 
the system, and thereby determine its eventual location in the cell, are 
contained in each protein’s amino acid sequence. The journey begins with the 
synthesis of a protein on a ribosome in the cytosol and, for many proteins, 
terminates when the protein reaches its final destination. Other proteins 
shuttle back and forth between the nucleus and cytosol. At each intermediate 
station (boxes), a decision is made as to whether the protein is to be retained 
in that compartment or transported further. A sorting signal may direct either 
retention in or exit from a compartment. 
   We shall refer to this figure often as a guide in this chapter and the next, 
highlighting in color the particular pathway being discussed. 
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transported proteins do not cross a membrane, vesicular transport can 
move proteins only between compartments that are topologically equiva-
lent (see Figure 12–4). 

Each mode of protein transfer is usually guided by sorting signals in the trans-
ported protein, which are recognized by complementary sorting receptors. If a 
large protein is to be imported into the nucleus, for example, it must possess a 
sorting signal that receptor proteins recognize to guide it through the nuclear pore 
complex. If a protein is to be transferred directly across a membrane, it must pos-
sess a sorting signal that the translocator recognizes. Likewise, if a protein is to be 
loaded into a certain type of vesicle or retained in certain organelles, a comple-
mentary receptor in the appropriate membrane must recognize its sorting signal. 

Signal Sequences and Sorting Receptors Direct Proteins to the 
Correct Cell Address
Most protein sorting signals involved in transmembrane transport reside in 
a stretch of amino acid sequence, typically 15–60 residues long. Such signal 
sequences are often found at the N-terminus of the polypeptide chain, and in 
many cases specialized signal peptidases remove the signal sequence from the 
finished protein once the sorting process is complete. Signal sequences can also 
be internal stretches of amino acids, which remain part of the protein. Such sig-
nals are used in gated transport into the nucleus. Sorting signals can also be com-
posed of multiple internal amino acid sequences that form a specific three-di-
mensional arrangement of atoms on the protein’s surface; such signal patches are 
sometimes used for nuclear import and in vesicular transport. 

Each signal sequence specifies a particular destination in the cell. Proteins 
destined for initial transfer to the ER usually have a signal sequence at their N- 
terminus that characteristically includes a sequence composed of about 5–10 
hydrophobic amino acids. Many of these proteins will in turn pass from the ER to 
the Golgi apparatus, but those with a specific signal sequence of four amino acids 
at their C-terminus are recognized as ER residents and are returned to the ER. 
Proteins destined for mitochondria have signal sequences of yet another type, in 
which positively charged amino acids alternate with hydrophobic ones. Finally, 
many proteins destined for peroxisomes have a signal sequence of three charac-
teristic amino acids at their C-terminus. 

Table 12–3 presents some specific signal sequences. Experiments in which the 
peptide is transferred from one protein to another by genetic engineering tech-
niques have demonstrated the importance of each of these signal sequences for 
protein targeting. Placing the N-terminal ER signal sequence at the beginning 
of a cytosolic protein, for example, redirects the protein to the ER; removing or 
mutating the signal sequence of an ER protein causes its retention in the cytosol. 
Signal sequences are therefore both necessary and sufficient for protein targeting. 
Even though their amino acid sequences can vary greatly, the signal sequences of 
proteins having the same destination are functionally interchangeable; physical 
properties, such as hydrophobicity, often seem to be more important in the sig-
nal-recognition process than the exact amino acid sequence.

Signal sequences are recognized by complementary sorting receptors that 
guide proteins to their appropriate destination, where the receptors unload their 
cargo. The receptors function catalytically: after completing one round of tar-
geting, they return to their point of origin to be reused. Most sorting receptors 
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Figure 12–6 Vesicle budding and fusion during vesicular transport. 
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topologically equivalent (target) compartment. In the process, soluble 
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and lipids in the donor compartment membrane is preserved in the target 
compartment membrane. Thus, membrane proteins retain their asymmetric 
orientation, with the same domains always facing the cytosol.
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recognize classes of proteins rather than an individual protein species. They can 
therefore be viewed as public transportation systems, dedicated to delivering 
numerous different components to their correct location in the cell. 

Most Organelles Cannot Be Constructed De Novo: They Require 
Information in the Organelle Itself
When a cell reproduces by division, it has to duplicate its organelles, in addition to 
its chromosomes. In general, cells do this by incorporating new molecules into the 
existing organelles, thereby enlarging them; the enlarged organelles then divide 
and are distributed to the two daughter cells. Thus, each daughter cell inherits a 
complete set of specialized cell membranes from its mother. This inheritance is 
essential because a cell could not make such membranes from scratch. If the ER 
were completely removed from a cell, for example, how could the cell reconstruct 
it? As we discuss later, the membrane proteins that define the ER and perform 
many of its functions are themselves products of the ER. A new ER could not be 
made without an existing ER or, at least, a membrane that specifically contains 
the protein translocators required to import selected proteins into the ER from the 
cytosol (including the ER-specific translocators themselves). The same is true for 
mitochondria and plastids.

Thus, it seems that the information required to construct an organelle does not 
reside exclusively in the DNA that specifies the organelle’s proteins. Information 
in the form of at least one distinct protein that preexists in the organelle mem-
brane is also required, and this information is passed from parent cell to daughter 
cells in the form of the organelle itself. Presumably, such information is essential 
for the propagation of the cell’s compartmental organization, just as the informa-
tion in DNA is essential for the propagation of the cell’s nucleotide and amino acid 
sequences. 

As we discuss in more detail in Chapter 13, however, the ER buds off a con-
stant stream of transport vesicles that incorporate only a subset of ER proteins and 
therefore have a composition different from the ER itself. Similarly, the plasma 
membrane constantly buds off various types of specialized endocytic vesicles. 
Thus, some organelles can form from other organelles and do not have to be 
inherited at cell division.

Table 12–3 Some Typical Signal Sequences

Function of signal 
sequence

Example of signal sequence

Import into nucleus -Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val-

Export from nucleus -Met-Glu-Glu-Leu-Ser-Gln-Ala-Leu-Ala-Ser-Ser-Phe-

Import into mitochondria +H3N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe-Lys-Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-
Arg-Tyr-Leu-Leu-

Import into plastid +H3N-Met-Val-Ala-Met-Ala-Met-Ala-Ser-Leu-Gln-Ser-Ser-Met-Ser-Ser-Leu-Ser-Leu-Ser-Ser-Asn-
Ser-Phe-Leu-Gly-Gln-Pro-Leu-Ser-Pro-Ile-Thr-Leu-Ser-Pro-Phe-Leu-Gln-Gly-

Import into peroxisomes -Ser-Lys-Leu-COO–

Import into ER +H3N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly-Ile-Leu-Phe-Trp-Ala-Thr-Glu-Ala-Glu-Gln-
Leu-Thr-Lys-Cys-Glu-Val-Phe-Gln-

Return to ER -Lys-Asp-Glu-Leu-COO–

Some characteristic features of the different classes of signal sequences are highlighted in color. Where they are known to be important for 
the function of the signal sequence, positively charged amino acids are shown in red and negatively charged amino acids are shown in green. 
Similarly, important hydrophobic amino acids are shown in orange and important hydroxylated amino acids are shown in blue. +H3N indicates the 
N-terminus of a protein; COO– indicates the C-terminus.
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Summary
Eukaryotic cells contain intracellular membrane-enclosed organelles that make up 
nearly half the cell’s total volume. The main ones present in all eukaryotic cells are 
the endoplasmic reticulum, Golgi apparatus, nucleus, mitochondria, lysosomes, 
endosomes, and peroxisomes; plant cells also contain plastids such as chloroplasts. 
These organelles contain distinct sets of proteins, which mediate each organelle’s 
unique function. 

Each newly synthesized organelle protein must find its way from a ribosome in 
the cytosol, where the protein is made, to the organelle where it functions. It does 
so by following a specific pathway, guided by sorting signals in its amino acid 
sequence that function as either signal sequences or signal patches. Sorting signals 
are recognized by complementary sorting receptors, which deliver the protein to the 
appropriate target organelle. Proteins that function in the cytosol do not contain 
sorting signals and therefore remain there after they are synthesized.

During cell division, organelles such as the ER and mitochondria are distributed 
to each daughter cell. These organelles contain information that is required for their 
construction, and so they cannot be made de novo.

The Transport of Molecules Between the 
Nucleus and the Cytosol
The nuclear envelope encloses the DNA and defines the nuclear compartment. 
This envelope consists of two concentric membranes, which are penetrated by 
nuclear pore complexes (Figure 12–7). Although the inner and outer nuclear 
membranes are continuous, they maintain distinct protein compositions. The 
inner nuclear membrane contains proteins that act as binding sites for chromo-
somes and for the nuclear lamina, a protein meshwork that provides structural 
support for the nuclear envelope; the lamina also acts as an anchoring site for 
chromosomes and the cytoplasmic cytoskeleton (via protein complexes that span 
the nuclear envelope). The inner membrane is surrounded by the outer nuclear 
membrane, which is continuous with the membrane of the ER. Like the ER mem-
brane (discussed later), the outer nuclear membrane is studded with ribosomes 
engaged in protein synthesis. The proteins made on these ribosomes are trans-
ported into the space between the inner and outer nuclear membranes (the peri-
nuclear space), which is continuous with the ER lumen (see Figure 12–7).

Bidirectional traffic occurs continuously between the cytosol and the nucleus. 
The many proteins that function in the nucleus—including histones, DNA poly-
merases, RNA polymerases, transcriptional regulators, and RNA-processing pro-
teins—are selectively imported into the nuclear compartment from the cytosol, 
where they are made. At the same time, almost all RNAs—including mRNAs, 
rRNAs, tRNAs, miRNAs, and snRNAs—are synthesized in the nuclear compart-
ment and then exported to the cytosol. Like the import process, the export process 
is selective; mRNAs, for example, are exported only after they have been properly 
modified by RNA-processing reactions in the nucleus. In some cases, the trans-
port process is complex. Ribosomal proteins, for instance, are made in the cytosol 
and imported into the nucleus, where they assemble with newly made ribosomal 
RNA into particles. The particles are then exported to the cytosol, where they 
assemble into ribosomes. Each of these steps requires selective transport across 
the nuclear envelope.

Nuclear Pore Complexes Perforate the Nuclear Envelope
Large and elaborate nuclear pore complexes (NPCs) perforate the nuclear enve-
lope in all eukaryotes. Each NPC is composed of a set of approximately 30 differ-
ent proteins, or nucleoporins. Reflecting the high degree of internal symmetry, 
each nucleoporin is present in multiple copies, resulting in 500–1000 protein mol-
ecules in the fully assembled NPC, with an estimated mass of 66 million daltons in 
yeast and 125 million daltons in vertebrates (Figure 12–8). Most nucleoporins are 
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composed of repetitive protein domains of only a few different types, which have 
evolved through extensive gene duplication. Some of the scaffold nucleoporins 
(see Figure 12–8) are structurally related to vesicle coat protein complexes, such 
as clathrin and COPII coatomer (discussed in Chapter 13), which shape transport 
vesicles; and one protein is used as a common building block in both NPCs and 
vesicle coats. These similarities suggest a common evolutionary origin for NPCs 
and vesicle coats: they may derive from an early membrane-bending protein 
module that helped shape the elaborate membrane systems of eukaryotic cells, 
and in present-day cells stabilize the sharp membrane bends required to form a 
nuclear pore. 

The nuclear envelope of a typical mammalian cell contains 3000–4000 NPCs, 
although that number varies widely, from a few hundred in glial cells to almost 
20,000 in Purkinje neurons. The total traffic that passes through each NPC is enor-
mous: each NPC can transport up to 1000 macromolecules per second and can 
transport in both directions at the same time. How it coordinates the bidirectional 
flow of macromolecules to avoid congestion and head-on collisions is not known.

Each NPC contains aqueous passages, through which small water-soluble 
molecules can diffuse passively. Researchers have determined the effective size 
of these passages by injecting labeled water-soluble molecules of different sizes 
into the cytosol and then measuring their rate of diffusion into the nucleus. Small 
molecules (5000 daltons or less) diffuse in so fast that we can consider the nuclear 
envelope freely permeable to them. Large proteins, however, diffuse in much 
more slowly, and the larger a protein, the more slowly it passes through the NPC. 
Proteins larger than 60,000 daltons cannot enter by passive diffusion. This size 
cut-off to free diffusion is thought to result from the NPC structure (see Figure 
12–8). The channel nucleoporins with extensive unstructured regions form a dis-
ordered tangle (much like a kelp bed in the ocean) that restricts the diffusion of 
large macromolecules while allowing smaller molecules to pass.

Because many cell proteins are too large to diffuse passively through the NPCs, 
the nuclear compartment and the cytosol can maintain different protein compo-
sitions. Mature cytosolic ribosomes, for example, are about 30 nm in diameter 
and thus cannot diffuse through the NPC, confining protein synthesis to the cyto-
sol. But how does the nucleus export newly made ribosomal subunits or import 
large molecules, such as DNA polymerases and RNA polymerases, which have 
subunit molecular masses of 100,000–200,000 daltons? As we discuss next, these 
and most other transported protein and RNA molecules bind to specific receptor 
proteins that actively ferry large molecules through NPCs. Even small proteins like 
histones frequently use receptor-mediated mechanisms to cross the NPC, thereby 
increasing transport efficiency.

Nuclear Localization Signals Direct Nuclear Proteins to the 
Nucleus
When proteins are experimentally extracted from the nucleus and reintroduced 
into the cytosol, even the very large ones reaccumulate efficiently in the nucleus. 
Sorting signals called nuclear localization signals (NLSs) are responsible for the 
selectivity of this active nuclear import process. The signals have been precisely 
defined by using recombinant DNA technology for numerous nuclear proteins, as 
well as for proteins that enter the nucleus only transiently (Figure 12–9). In many 
nuclear proteins, the signals consist of one or two short sequences that are rich 
in the positively charged amino acids lysine and arginine (see Table 12–3, p. 648), 
with the precise sequence varying for different proteins. Other nuclear proteins 
contain different signals, some of which are not yet characterized.

Nuclear localization signals can be located almost anywhere in the amino acid 
sequence and are thought to form loops or patches on the protein surface. Many 
function even when linked as short peptides to lysine side chains on the surface 
of a cytosolic protein, suggesting that the precise location of the signal within the 
amino acid sequence of a nuclear protein is not important. Moreover, as long 
as one of the protein subunits of a multicomponent complex displays a nuclear 
localization signal, the entire complex will be imported into the nucleus.
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Figure 12–7 The nuclear envelope. The 
double-membrane envelope is penetrated 
by pores in which nuclear pore complexes 
(not shown) are positioned. The outer 
nuclear membrane is continuous with 
the endoplasmic reticulum (ER). The 
ribosomes that are normally bound to the 
cytosolic surface of the ER membrane and 
outer nuclear membrane are not shown. 
The nuclear lamina is a fibrous protein 
meshwork underlying the inner membrane.
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One can visualize the transport of nuclear proteins through NPCs by coating 
gold particles with a nuclear localization signal, injecting the particles into the 
cytosol, and then following their fate by electron microscopy (Figure 12–10). The 
particles bind to the tentaclelike fibrils that extend from the scaffold nucleoporins 
at the rim of the NPC into the cytosol, and then proceed through the center of the 
NPC. Presumably, the unstructured regions of the nucleoporins that form a diffu-
sion barrier for large molecules (mentioned earlier) are pushed away to allow the 
coated gold particles to squeeze through.

Macromolecular transport across NPCs differs fundamentally from the 
transport of proteins across the membranes of other organelles, in that it occurs 
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Figure 12–8 The arrangement of NPCs in the nuclear envelope. (A) In a vertebrate NPC, nucleoporins are arranged with striking eightfold 
rotational symmetry. In addition, immunoelectron microscopic studies show that the proteins that make up the central portion of the NPC are 
oriented symmetrically across the nuclear envelope, so that the nuclear and cytosolic sides look identical. The eightfold rotational and twofold 
transverse symmetry explains how such a huge structure can be formed from only about 30 different proteins: many of the nucleoporins are 
present in 8, 16, or 32 copies. Based on their approximate localization in the central portion of the NPC, nucleoporins can be classified into (1) 
transmembrane ring proteins that span the nuclear envelope and anchor the NPC to the envelope; (2) scaffold nucleoporins that form layered ring 
structures. Some scaffold nucleoporins are membrane-bending proteins that stabilize the sharp membrane curvature where the nuclear envelope 
is penetrated; and (3) channel nucleoporins that line a central pore. In addition to folded domains that anchor the proteins in specific places, many 
channel nucleoporins contain extensive unstructured regions, where the polypeptide chains are intrinsically disordered. The central pore is filled 
with a tangled mesh of these disordered domains that blocks the passive diffusion of large macromolecules. The disordered regions contain a 
large number of phenylalanine-glycine (FG) repeats. Fibrils protrude from both the cytosolic and the nuclear sides of the NPC. By contrast to the 
twofold transverse symmetry of the NPC core, the fibrils facing the cytosol and nucleus are different: on the nuclear side, the fibrils converge at 
their distal end to form a basketlike structure. The precise arrangement of individual nucleoporins in the assembled NPC is still a matter of intense 
debate, because atomic resolution analyses have been hindered by the sheer size and flexible nature of the NPC, and by difficulties in purifying 
sufficient amounts of homogeneous material. A combination of electron microscopy, computational analyses, and crystal structures of nucleoporin 
subcomplexes has been used to develop the current models of the NPC architecture. (B) A scanning electron micrograph of the nuclear side of the 
nuclear envelope of an oocyte (see also Figure 9–52). (C) An electron micrograph showing a side view of two NPCs (brackets); note that the inner 
and outer nuclear membranes are continuous at the edges of the pore. (D) An electron micrograph showing face-on views of negatively stained 
NPCs. The membrane has been removed by detergent extraction. Note that some of the NPCs contain material in their center, which is thought to 
be trapped macromolecules in transit through these NPCs. (A, adapted from A. Hoelz, E.W. Debler and G. Blobel, Annu. Rev. Biochem. 80:613–
643, 2011. With permission from Annual Reviews; B, from M.W. Goldberg and T.D. Allen, J. Cell Biol. 119:1429–1440, 1992. With permission from 
The Rockefeller University Press; C, courtesy of Werner Franke and Ulrich Scheer; D, courtesy of Ron Milligan.)
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through a large, expandable, aqueous pore, rather than through a protein trans-
porter spanning one or more lipid bilayers. For this reason, fully folded nuclear 
proteins can be transported into the nucleus through an NPC, and newly formed 
ribosomal subunits are transported out of the nucleus as an assembled particle. 
By contrast, proteins have to be extensively unfolded to be transported into most 
other organelles, as we discuss later. 

Nuclear Import Receptors Bind to Both Nuclear Localization 
Signals and NPC Proteins
To initiate nuclear import, most nuclear localization signals must be recognized 
by nuclear import receptors, sometimes called importins, most of which are 
encoded by a family of related genes. Each family member encodes a receptor 
protein that can bind and transport the subset of cargo proteins containing the 
appropriate nuclear localization signal (Figure 12–11A). Nuclear import recep-
tors do not always bind to nuclear proteins directly. Additional adaptor proteins 
can form a bridge between the import receptors and the nuclear localization sig-
nals on the proteins to be transported (Figure 12–11B). Some adaptor proteins 
are structurally related to nuclear import receptors, suggesting a common evolu-
tionary origin. By using a variety of import receptors and adaptors, cells are able 
to recognize the broad repertoire of nuclear localization signals that are displayed 
on nuclear proteins.

The import receptors are soluble cytosolic proteins that bind both to the 
nuclear localization signal on the cargo protein and to the phenylalanine-gly-
cine (FG) repeats in the unstructured domains of the channel nucleoporins that 
line the central pore. FG-repeats are also found in the cytoplasmic and nuclear 
fibrils. FG-repeats in the unstructured tangle of the pore are thought to do double 
duty. They interact weakly, which gives the protein tangle gel-like properties that 
impose a permeability barrier to large macromolecules, and they serve as dock-
ing sites for nuclear import receptors. FG-repeats line the path through the NPCs 
taken by the import receptors and their bound cargo proteins. According to one 
model of nuclear transport, the receptor–cargo complexes move along the trans-
port path by repeatedly binding, dissociating, and then re-binding to adjacent 
FG-repeat sequences. In this way, the complexes may hop from one nucleoporin 
to another to traverse the tangled interior of the NPC in a random walk. As import 
receptors bind to FG-repeats during this journey, they would disrupt interaction 
between the repeats and locally dissolve the gel phase of the protein tangle that 
fills the pore, allowing the passage of the receptor–cargo complex. Once inside the 
nucleus, the import receptors dissociate from their cargo and return to the cyto-
sol. As we will see, this dissociation only occurs on the nuclear side of the NPC and 
thereby confers directionality to the import process.

Nuclear Export Works Like Nuclear Import, But in Reverse
The nuclear export of large molecules, such as new ribosomal subunits and 
RNA molecules, occurs through NPCs and also depends on a selective transport 
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Figure 12–9 The function of a nuclear 
localization signal. Immunofluorescence 
micrographs showing the cell location 
of SV40 virus T-antigen containing or 
lacking a short sequence that serves as a 
nuclear localization signal. (A) The normal 
T-antigen protein contains the lysine-rich 
sequence indicated and is imported to its 
site of action in the nucleus, as indicated 
by immunofluorescence staining with 
antibodies against the T-antigen.  
(B) T-antigen with an altered nuclear 
localization signal (a threonine replacing  
a lysine) remains in the cytosol. (From  
D. Kalderon, B. Roberts, W. Richardson 
and A. Smith, Cell 39:499–509, 1984. With 
permission from Elsevier.)

Figure 12–10 Visualizing active import 
through NPCs. This series of electron 
micrographs shows colloidal gold spheres 
(arrowheads) coated with peptides 
containing nuclear localization signals 
entering the nucleus through NPCs. The 
gold particles were injected into the cytosol 
of living cells, which then were fixed and 
prepared for electron microscopy at various 
times after injection. (A) Gold particles are 
first seen in proximity to the cytosolic fibrils 
of the NPCs. (B, C) They are then seen at 
the center of the NPCs, exclusively on the 
cytosolic face. (D) They then appear on 
the nuclear face. These gold particles have 
much larger diameters than the diffusion 
channels in the NPC and are imported by 
active transport. (From N. Panté and U. 
Aebi, Science 273:1729–1732, 1996. With 
permission from AAAS.)
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system. The transport system relies on nuclear export signals on the macromol-
ecules to be exported, as well as on complementary nuclear export receptors, 
or exportins. These receptors bind to both the export signal and NPC proteins to 
guide their cargo through the NPC to the cytosol.

Many nuclear export receptors are structurally related to nuclear import 
receptors, and they are encoded by the same gene family of nuclear transport 
receptors, or karyopherins. In yeast, there are 14 genes encoding karyopherins; in 
animal cells, the number is significantly larger. It is often not possible to tell from 
their amino acid sequence alone whether a particular family member works as a 
nuclear import or nuclear export receptor. As might be expected, therefore, the 
import and export transport systems work in similar ways but in opposite direc-
tions: the import receptors bind their cargo molecules in the cytosol, release them 
in the nucleus, and are then exported to the cytosol for reuse, while the export 
receptors function in the opposite fashion.

The Ran GTPase Imposes Directionality on Transport Through 
NPCs
The import of nuclear proteins through NPCs concentrates specific proteins in the 
nucleus and thereby increases order in the cell. The cell fuels this ordering process 
by harnessing energy stored in concentration gradients of the GTP-bound form 
of the monomeric GTPase Ran, which is required for both nuclear import and 
export.

Like other GTPases, Ran is a molecular switch that can exist in two conforma-
tional states, depending on whether GDP or GTP is bound (discussed in Chapter 
3). Two Ran-specific regulatory proteins trigger the conversion between the two 
states: a cytosolic GTPase-activating protein (GAP) triggers GTP hydrolysis and 
thus converts Ran-GTP to Ran-GDP, and a nuclear guanine exchange factor (GEF) 
promotes the exchange of GDP for GTP and thus converts Ran-GDP to Ran-GTP. 
Because Ran-GAP is located in the cytosol and Ran-GEF is located in the nucleus 
where it is anchored to chromatin, the cytosol contains mainly Ran-GDP, and the 
nucleus contains mainly Ran-GTP (Figure 12–12).
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Figure 12–11 Nuclear import receptors 
(importins). (A) Different nuclear import 
receptors bind different nuclear localization 
signals and thereby different cargo 
proteins. (B) Cargo protein 4 requires an 
adaptor protein to bind to its nuclear import 
receptor. The adaptors are structurally 
related to nuclear import receptors and 
recognize nuclear localization signals 
on cargo proteins. They also contain a 
nuclear localization signal that binds them 
to an import receptor, but this signal only 
becomes exposed when they are loaded 
with a cargo protein.
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Figure 12–12 The compartmentalization 
of Ran-GDP and Ran-GTP. Localization 
of Ran-GDP in the cytosol and Ran-GTP in 
the nucleus results from the localization of 
two Ran regulatory proteins: Ran GTPase-
activating protein (Ran-GAP) is located in 
the cytosol, and Ran guanine nucleotide 
exchange factor (Ran-GEF) binds to 
chromatin and is therefore located in the 
nucleus.
   Ran-GDP is imported into the nucleus by 
its own import receptor, which is specific 
for the GDP-bound conformation of Ran. 
The Ran-GDP receptor is structurally 
unrelated to the main family of nuclear 
transport receptors. However, it also 
binds to FG-repeats in NPC channel 
nucleoporins. 
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This gradient of the two conformational forms of Ran drives nuclear transport 
in the appropriate direction. Docking of nuclear import receptors to FG-repeats 
on the cytosolic side of the NPC, for example, occurs whether or not these recep-
tors are loaded with appropriate cargo. Import receptors, facilitated by FG-repeat 
binding, then enter the channel. If they reach the nuclear side of the pore com-
plex, Ran-GTP binds to them, and, if the receptors arrive loaded with cargo mol-
ecules, the Ran-GTP binding causes the receptors to release their cargo (Figure 
12–13A). Because the Ran-GDP in the cytosol does not bind to import (or export) 
receptors, unloading occurs only on the nuclear side of the NPC. In this way, the 
nuclear localization of Ran-GTP creates the directionality of the import process. 

Having discharged its cargo in the nucleus, the empty import receptor with 
Ran-GTP bound is transported back through the pore complex to the cytosol. 
There, Ran-GAP triggers Ran-GTP to hydrolyze its bound GTP, thereby converting 
it to Ran-GDP, which dissociates from the receptor. The receptor is then ready for 
another cycle of nuclear import.

Nuclear export occurs by a similar mechanism, except that Ran-GTP in the 
nucleus promotes cargo binding to the export receptor, rather than promoting 
cargo dissociation. Once the export receptor moves through the pore to the cyto-
sol, it encounters Ran-GAP, which induces the receptor to hydrolyze its GTP to 
GDP. As a result, the export receptor releases both its cargo and Ran-GDP in the 
cytosol. Free export receptors are then returned to the nucleus to complete the 
cycle (Figure 12–13B). 

Transport Through NPCs Can Be Regulated by Controlling Access 
to the Transport Machinery 
Some proteins contain both nuclear localization signals and nuclear export sig-
nals. These proteins continually shuttle back and forth between the nucleus and 
the cytosol. The relative rates of their import and export determine the steady-
state localization of such shuttling proteins: if the rate of import exceeds the rate 
of export, a protein will be located mainly in the nucleus; conversely, if the rate of 
export exceeds the rate of import, a protein will be located mainly in the cytosol. 
Thus, changing the rate of import, export, or both, can change the location of a 
protein.
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Figure 12–13 How GTP hydrolysis 
by Ran in the cytosol provides 
directionality to nuclear transport. 
Movement through the NPC of loaded 
nuclear transport receptors occurs along 
the FG-repeats displayed by certain NPC 
proteins. The differential localization of 
Ran-GTP in the nucleus and Ran-GDP 
in the cytosol provides directionality (red 
arrows) to both nuclear import (A) and 
nuclear export (B). Ran-GAP stimulates the 
hydrolysis of GTP to produce Ran-GDP on 
the cytosolic side of the NPC (see Figure 
12–12).
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Some shuttling proteins move continuously into and out of the nucleus. In 
other cases, however, the transport is stringently controlled. As discussed in Chap-
ter 7, cells control the activity of some transcription regulators by keeping them 
out of the nucleus until they are needed there (Figure 12–14). In many cases, cells 
control transport by regulating nuclear localization and export signals—turn-
ing them on or off, often by phosphorylation of amino acids close to the signal 
sequences (Figure 12–15).

Other transcription regulators are bound to inhibitory cytosolic proteins that 
either anchor them in the cytosol (through interactions with the cytoskeleton or 
specific organelles) or mask their nuclear localization signals so that they cannot 
interact with nuclear import receptors. An appropriate stimulus releases the gene 
regulatory protein from its cytosolic anchor or mask, and it is then transported 
into the nucleus. One important example is the latent gene regulatory protein that 
controls the expression of proteins involved in cholesterol metabolism. The pro-
tein is made and stored in an inactive form as a transmembrane protein in the ER. 
When a cell is deprived of cholesterol, the protein is transported from the ER to 
the Golgi apparatus where it encounters specific proteases that cleave off the cyto-
solic domain, releasing it into the cytosol. This domain is then imported into the 
nucleus, where it activates the transcription of genes required for both cholesterol 
uptake and synthesis (Figure 12–16). 

As we discuss in detail in Chapter 6, cells control the export of RNAs from the 
nucleus in a similar way. snRNAs, miRNAs, and tRNAs bind to the same family 
of nuclear export receptors just discussed, and they use the same Ran-GTP gra-
dient to fuel the transport process. By contrast, the export of mRNAs out of the 
nucleus uses a different mechanism. mRNAs are exported as large assemblies, 
which can be as large as 100 million daltons (see Figure 6–37) and can contain 
hundreds of proteins of a few dozen different types. These mRNA ribonucleo- 
protein complexes (mRNPs) first dock at the nuclear side of the NPC, where they 
are extensively remodeled. Although Ran-GTP is indirectly involved in the export 
(because it imports the proteins that bind to the mRNA molecules), the transloca-
tion across the NPC is thought to be driven by ATP hydrolysis. How export direc-
tionality is assured is unclear. It is likely that the many accessory proteins tethered 
to the NPC’s nuclear and cytoplasmic fibrils have important roles in remodeling 
the mRNPs as they pass through the pores, in particular stripping away nuclear 
proteins as the mRNPs exit on the cytosolic side of the NPC, thereby ensuring 
that transport is unidirectional. Upon entry into the cytosol, these nuclear mRNP 
proteins are rapidly returned to the nucleus. 

THE TRANSPORT OF MOLECULES BETWEEN THE NUCLEUS AND THE CYTOSOL

150 µm

MBoC6 m12.17/12.17

CYTOSOL

NUCLEUS

MBoC6 m12.18/12.17

low [Ca2+]
in resting T cell

high [Ca2+] in
activated T cell

nuclear import
signal

blocked nuclear
export signal

ACTIVATION OF
GENE TRANSCRIPTION

ATP + active
protein kinase

exposed
nuclear export

signal

NF-AT

calcineurin
(protein
phosphatase)

PPP

PPP

Pi
Pi

Pi

Figure 12–14 The control of nuclear 
transport in the early Drosophila 
embryo. The embryo at this stage is a 
syncytium, shown here in cross section, 
with many nuclei in a common cytoplasm, 
arranged around the periphery, just 
beneath the plasma membrane. The 
transcription regulatory protein Dorsal 
is produced uniformly throughout the 
peripheral cytoplasm, but it can act only 
when inside the nuclei. The Dorsal protein 
has been stained with an enzyme-coupled 
antibody that yields a brown product, 
revealing that Dorsal is excluded from the 
nuclei at the dorsal side (top) of the embryo 
but is concentrated in the nuclei toward 
the ventral side (bottom) of the embryo. 
The regulated traffic of Dorsal into the 
nuclei controls the differential development 
between the back and belly of the animal. 
(Courtesy of Siegfried Roth.)

Figure 12–15 The control of nuclear 
import during T cell activation. The 
nuclear factor of activated T cells  
(NF-AT) is a transcription regulatory protein 
that, in the resting T cell, is found in the 
cytosol in a phosphorylated state. When 
T cells are activated by foreign antigen 
(discussed in Chapter 24), the intracellular 
Ca2+ concentration increases. In high Ca2+, 
the protein phosphatase calcineurin binds 
to NF-AT and dephosphorylates it. The 
dephosphorylation exposes nuclear import 
signals and blocks a nuclear export signal. 
The complex of NF-AT and calcineurin 
is therefore imported into the nucleus, 
where NF-AT activates the transcription 
of numerous genes required for T cell 
activation.
   The response shuts off when Ca2+ levels 
decrease, releasing NF-AT from calcineurin. 
Rephosphorylation of NF-AT inactivates 
the nuclear import signals and re-exposes 
the nuclear export signal, causing NF-AT to 
relocate to the cytosol. Some of the most 
potent immunosuppressive drugs, including 
cyclosporin A and FK506, inhibit the ability 
of calcineurin to dephosphorylate NF-AT 
and thereby block the nuclear accumulation 
of NF-AT and T cell activation (Movie 12.1). 
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During Mitosis the Nuclear Envelope Disassembles
The nuclear lamina, located on the nuclear side of the inner nuclear membrane, 
is a meshwork of interconnected protein subunits called nuclear lamins. The 
lamins are a special class of intermediate filament proteins (discussed in Chapter 
16) that polymerize into a two-dimensional lattice (Figure 12–17). The nuclear 
lamina gives shape and stability to the nuclear envelope, to which it is anchored 
by attachment to both the NPCs and transmembrane proteins of the inner nuclear 
membrane. The lamina also interacts directly with chromatin, which itself inter-
acts with transmembrane proteins of the inner nuclear membrane. Together with 
the lamina, these inner membrane proteins provide structural links between the 
DNA and the nuclear envelope.

When a nucleus is dismantled during mitosis, the NPCs and nuclear lamina 
disassemble and the nuclear envelope fragments. The dismantling process is at 
least partly a consequence of direct phosphorylation of nucleoporins and lamins 
by the cyclin-dependent protein kinase (Cdk) that is activated at the onset of mito-
sis (discussed in Chapter 17). During this process, some NPC proteins become 
bound to nuclear import receptors, which play an important part in the reassem-
bly of NPCs at the end of mitosis. Nuclear envelope membrane proteins—no lon-
ger tethered to the pore complexes, lamina, or chromatin—disperse throughout 
the ER membrane. The dynein motor protein, which moves along microtubules 
(discussed in Chapter 16), actively participates in tearing the nuclear envelope off 
the chromatin. Together, these processes break down the barriers that normally 
separate the nucleus and cytosol, and the nuclear proteins that are not bound to 
membranes or chromosomes intermix completely with the proteins of the cytosol 
(Figure 12–18).

Later in mitosis, the nuclear envelope reassembles on the surface of the 
daughter chromosomes. In addition to its crucial role in nuclear transport, the 
Ran GTPase also acts as a positional marker for chromatin during cell division, 
when the nuclear and cytosolic components intermix. Because Ran-GEF remains 
bound to chromatin when the nuclear envelope breaks down, Ran molecules 
close to chromatin are mainly in their GTP-bound conformation. By contrast, Ran 
molecules further away have a high likelihood of encountering Ran-GAP, which 
is distributed throughout the cytosol; these Ran molecules are mainly in their 
GDP-bound conformation. As a result, the chromosomes in mitotic cells are sur-
rounded by a cloud of Ran-GTP. Ran-GTP releases the NPC proteins in proximity 
to the chromosomes from nuclear import receptors. The free NPC proteins attach 
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Figure 12–16 Feedback regulation 
of cholesterol biosynthesis. SREBP 
(sterol response element binding protein), 
a latent transcription regulator that controls 
expression of cholesterol biosynthetic 
enzymes, is initially synthesized as an ER 
membrane protein. It is anchored in the 
ER if there is sufficient cholesterol in the 
membrane by interaction with another 
ER membrane protein, called SCAP 
(SREBP cleavage activation protein), 
which binds cholesterol. If the cholesterol 
binding site on SCAP is empty (at low 
cholesterol concentrations), SCAP changes 
conformation and is packaged together 
with SREBP into transport vesicles, which 
deliver their cargo to the Golgi apparatus, 
where two Golgi-resident proteases cleave 
SREBP to free its cytosolic domain from 
the membrane. The cytosolic domain then 
moves into the nucleus, where it binds 
to the promoters of genes that encode 
proteins involved in cholesterol biosynthesis 
and activates their transcription. In this 
way, more cholesterol is made when its 
concentration falls below a threshold.

1 µm
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Figure 12–17 The nuclear lamina. An 
electron micrograph of a portion of the 
nuclear lamina in a Xenopus oocyte prepared 
by freeze-drying and metal shadowing. 
The lamina is formed by a regular lattice of 
specialized intermediate filaments. Lamins 
are only present in metazoan cells. Other, 
yet-unknown proteins may serve similar 
functions in species that lack lamins. 
(Courtesy of Ueli Aebi.)
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to the chromosome surface, where they assemble into new NPCs. At the same 
time, inner nuclear membrane proteins and dephosphorylated lamins bind again 
to chromatin. ER membranes wrap around groups of chromosomes until they 
form a sealed nuclear envelope (Movie 12.2). During this process, the NPCs start 
actively re-importing proteins that contain nuclear localization signals. Because 
the nuclear envelope is initially closely applied to the surface of the chromosomes, 
the newly formed nucleus excludes all proteins except those initially bound to the 
mitotic chromosomes and those that are selectively imported through NPCs. In 
this way, all other large proteins, including ribosomes, are kept out of the newly 
assembled nucleus.

As we discuss in Chapter 17, the cloud of Ran-GTP surrounding chromatin is 
also important in assembling the mitotic spindle in a dividing cell.

Summary
The nuclear envelope consists of an inner and an outer nuclear membrane that are 
continuous with each other and with the ER membrane, and the space between the 
inner and outer nuclear membrane is continuous with the ER lumen. RNA mole-
cules, which are made in the nucleus, and ribosomal subunits, which are assembled 
there, are exported to the cytosol; in contrast, all the proteins that function in the 
nucleus are synthesized in the cytosol and are then imported. The extensive traffic of 
materials between the nucleus and cytosol occurs through nuclear pore complexes 
(NPCs), which provide a direct passageway across the nuclear envelope. Small 
molecules diffuse passively through the NPCs, but large macromolecules have to be 
actively transported.

Proteins containing nuclear localization signals are actively transported into 
the nucleus through NPCs, while proteins containing nuclear export signals are 
transported out of the nucleus to the cytosol. Some proteins, including the nuclear 
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Figure 12–18 The breakdown and re-
formation of the nuclear envelope and 
lamina during mitosis. Phosphorylation 
of the lamins triggers the disassembly 
of the nuclear lamina, which initiates 
the nuclear envelope to break up. 
Dephosphorylation of the lamins reverses 
the process. An analogous phosphorylation 
and dephosphorylation cycle occurs 
for some nucleoporins and proteins of 
the inner nuclear membrane, and some 
of these dephosphorylations are also 
involved in the reassembly process. As 
indicated, the nuclear envelope initially 
re-forms around individual decondensing 
daughter chromosomes. Eventually, 
as decondensation progresses, these 
structures fuse to form a single complete 
nucleus.
    Mitotic breakdown of the nuclear 
envelope occurs in all metazoan cells. 
However, in many other species, such as 
yeasts, the nuclear envelope remains intact 
during mitosis, and the nucleus divides by 
fission.
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import and export receptors, continually shuttle between the cytosol and nucleus. 
The monomeric GTPase Ran provides both the free energy and the directionality for 
nuclear transport. Cells regulate the transport of nuclear proteins and RNA mole-
cules through the NPCs by controlling the access of these molecules to the transport 
machinery. Newly transcribed messenger RNA and ribosomal RNA are exported 
from the nucleus as parts of large ribonucleoprotein complexes. Because nuclear 
localization signals are not removed, nuclear proteins can be imported repeatedly, 
as is required each time that the nucleus reassembles after mitosis.

The Transport of Proteins into 
Mitochondria and Chloroplasts
Mitochondria and chloroplasts (a specialized form of plastids in green algae 
and plant cells) are double-membrane-enclosed organelles. They specialize in 
ATP synthesis, using energy derived from electron transport and oxidative phos-
phorylation in mitochondria and from photosynthesis in chloroplasts (discussed 
in Chapter 14). Although both organelles contain their own DNA, ribosomes, 
and other components required for protein synthesis, most of their proteins are 
encoded in the cell nucleus and imported from the cytosol. Each imported pro-
tein must reach the particular organelle subcompartment in which it functions. 

There are different subcompartments in mitochondria (Figure 12–19A): the 
internal matrix space and the intermembrane space, which is continuous with 
the cristae space. These compartments are formed by the two concentric mito-
chondrial membranes: the inner membrane, which encloses the matrix space 
and forms extensive invaginations called cristae, and the outer membrane, 
which is in contact with the cytosol. Protein complexes provide boundaries at the 
junctions where the cristae invaginate and divide the inner membrane into two 
domains: one inner membrane domain surrounds the cristae space, and the other 
domain abuts the outer membrane. Chloroplasts also have an outer and inner 
membrane, which enclose an intermembrane space, and the stroma, which is the 
chloroplast equivalent of the mitochondrial matrix space (Figure 12–19B). They 
have an additional subcompartment, the thylakoid space, which is surrounded by 
the thylakoid membrane. The thylakoid membrane derives from the inner mem-
brane during plastid development and is pinched off to become discontinuous 
with it. Each of the subcompartments in mitochondria and chloroplasts contains 
a distinct set of proteins. 

New mitochondria and chloroplasts are produced by the growth of preexist-
ing organelles, followed by fission (discussed in Chapter 14). The growth depends 
mainly on the import of proteins from the cytosol. The imported proteins must 
be transported across a number of membranes in succession and end up in the 
appropriate place. The process of protein movement across membranes is called 
protein translocation. This section explains how it occurs.

(A)   MITOCHONDRION (B)   CHLOROPLAST
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Figure 12–19 The subcompartments 
of mitochondria and chloroplasts. In 
contrast to the cristae of mitochondria (A), 
the thylakoids of chloroplasts (B) are not 
connected to the inner membrane and 
therefore form a sealed compartment with 
a separate internal space.
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Translocation into Mitochondria Depends on Signal Sequences 
and Protein Translocators
Proteins imported into mitochondria are usually taken up from the cytosol within 
seconds or minutes of their release from ribosomes. Thus, in contrast to protein 
translocation into the ER, which often takes place simultaneously with translation 
by a ribosome docked on the rough ER membrane (described later), mitochon-
drial proteins are first fully synthesized as mitochondrial precursor proteins in 
the cytosol and then translocated into mitochondria by a post-translational mech-
anism. One or more signal sequences direct all mitochondrial precursor proteins 
to their appropriate mitochondrial subcompartment. Many proteins entering the 
matrix space contain a signal sequence at their N-terminus that a signal pepti-
dase rapidly removes after import. Other imported proteins, including all outer 
membrane and many inner membrane and intermembrane space proteins, have 
internal signal sequences that are not removed. The signal sequences are both 
necessary and sufficient for the import and correct localization of the proteins: 
when genetic engineering techniques are used to link these signals to a cytosolic 
protein, the signals direct the protein to the correct mitochondrial subcompart-
ment.

The signal sequences that direct precursor proteins into the mitochondrial 
matrix space are best understood. They all form an amphiphilic α helix, in which 
positively charged residues cluster on one side of the helix, while uncharged 
hydrophobic residues cluster on the opposite side. Specific receptor proteins that 
initiate protein translocation recognize this configuration rather than the precise 
amino acid sequence of the signal sequence (Figure 12–20). 

Multisubunit protein complexes that function as protein translocators medi-
ate protein movement across mitochondrial membranes. The TOM complex 
transfers proteins across the outer membrane, and two TIM complexes (TIM23 
and TIM22) transfer proteins across the inner membrane (Figure 12–21). These 
complexes contain some components that act as receptors for mitochondrial pre-
cursor proteins, and other components that form the translocation channels. 

The TOM complex is required for the import of all nucleus-encoded mitochon-
drial proteins. It initially transports their signal sequences into the intermembrane 
space and helps to insert transmembrane proteins into the outer membrane. 
β-barrel proteins, which are particularly abundant in the outer membrane, are 
then passed on to an additional translocator, the SAM complex, which helps them 
to fold properly in the outer membrane. The TIM23 complex transports some sol-
uble proteins into the matrix space and helps to insert transmembrane proteins 
into the inner membrane. The TIM22 complex mediates the insertion of a sub-
class of inner membrane proteins, including the transporter that moves ADP, ATP, 
and phosphate in and out of mitochondria. Yet another protein translocator in 
the inner mitochondrial membrane, the OXA complex, mediates the insertion of 
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Figure 12–20 A signal sequence 
for mitochondrial protein import. 
Cytochrome oxidase is a large multiprotein 
complex located in the inner mitochondrial 
membrane, where it functions as the 
terminal enzyme in the electron-transport 
chain (discussed in Chapter 14). (A) The 
first 18 amino acids of the precursor to 
subunit IV of this enzyme serve as a signal 
sequence for import of the subunit into 
the mitochondrion. (B) When the signal 
sequence is folded as an α helix, the 
positively charged amino acids (red) are 
clustered on one face of the helix, while 
the nonpolar ones (green) are clustered 
primarily on the opposite face. Uncharged 
polar amino acids are shaded orange; 
nitrogen atoms on the side chains of 
Arg and Gln are colored blue. Signal 
sequences that direct proteins into the 
matrix space always have the potential to 
form such an amphiphilic α helix, which is 
recognized by specific receptor proteins 
on the mitochondrial surface. (C) The 
structure of a signal sequence (of alcohol 
dehydrogenase, another mitochondrial 
matrix enzyme), bound to an import 
receptor (gray), as determined by nuclear 
magnetic resonance. The amphiphilic α 
helix binds with its hydrophobic face to  
a hydrophobic groove in the receptor  
(PDB code: 1OM2).
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those inner membrane proteins that are synthesized within mitochondria. It also 
helps to insert some imported inner membrane proteins that are initially trans-
ported into the matrix space by the other complexes. 

Mitochondrial Precursor Proteins Are Imported as Unfolded 
Polypeptide Chains
We have learned almost everything we know about the molecular mechanism of 
protein import into mitochondria from analyses of cell-free, reconstituted trans-
location systems, in which purified mitochondria in a test tube import radiola-
beled mitochondrial precursor proteins. By changing the conditions in the test 
tube, it is possible to establish the biochemical requirements for the import.

Mitochondrial precursor proteins do not fold into their native structures after 
they are synthesized; instead, they remain unfolded in the cytosol through inter-
actions with other proteins. Some of these interacting proteins are general chap-
erone proteins of the hsp70 family (discussed in Chapter 6), whereas others are 
dedicated to mitochondrial precursor proteins and bind directly to their signal 
sequences. All the interacting proteins help to prevent the precursor proteins 
from aggregating or folding up spontaneously before they engage with the TOM 
complex in the outer mitochondrial membrane. As a first step in the import pro-
cess, the import receptors of the TOM complex bind the signal sequence of the 
mitochondrial precursor protein. The interacting proteins are then stripped off, 
and the unfolded polypeptide chain is fed—signal sequence first—into the trans-
location channel. 

In principle, a protein could reach the mitochondrial matrix space by either 
crossing the two membranes all at once or crossing one at a time. One can dis-
tinguish between these possibilities by cooling a cell-free mitochondrial import 
system to arrest the proteins at an intermediate step in the translocation process. 
The result is that the arrested proteins no longer contain their N-terminal signal 
sequence, indicating that the N-terminus must be in the matrix space where the 
signal peptidase is located, but the bulk of the protein can still be attacked from 
outside the mitochondria by externally added proteolytic enzymes. Clearly, the 
precursor proteins can pass through both mitochondrial membranes at once to 
enter the matrix space (Figure 12–22). The TOM complex first transports the sig-
nal sequence across the outer membrane to the intermembrane space, where it 
binds to a TIM complex, opening the channel in the complex. The polypeptide 
chain is then either translocated into the matrix space or inserted into the inner 
membrane. 

Figure 12–21 The protein translocators 
in the mitochondrial membranes. The 
TOM, TIM, SAM, and OXA complexes are 
multimeric membrane protein assemblies 
that catalyze protein translocation across 
mitochondrial membranes. The protein 
components of the TIM22 and TIM23 
complexes that line the import channel are 
structurally related, suggesting a common 
evolutionary origin of both TIM complexes. 
On the matrix side, the TIM23 complex 
is bound to a multimeric protein complex 
containing mitochondrial hsp70, which 
acts as an import ATPase, using ATP 
hydrolysis to pull proteins through the pore. 
In animal cells, subtle variations exist in the 
subunit composition of the translocator 
complexes to adapt the mitochondrial 
import machinery to the particular needs of 
specialized cell types. SAM = Sorting and 
Assembly Machinery; OXA = cytochrome 
OXidase Activity; TIM = Translocator of the 
Inner Mitochondrial membrane;  
TOM = Translocator of the Outer 
Membrane.
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Although the TOM and TIM complexes usually work together to translocate 
precursor proteins across both membranes at the same time, they can work inde-
pendently. In isolated outer membranes, for example, the TOM complex can 
translocate the signal sequence of precursor proteins across the membrane. Sim-
ilarly, if the outer membrane is experimentally disrupted in isolated mitochon-
dria, the exposed TIM23 complex can efficiently import precursor proteins into 
the matrix space. 

ATP Hydrolysis and a Membrane Potential Drive Protein Import 
Into the Matrix Space
Directional transport requires energy, which in most biological systems is sup-
plied by ATP hydrolysis. ATP hydrolysis fuels mitochondrial protein import at 
two discrete sites, one outside the mitochondria and one in the matrix space. In 
addition, protein import requires another energy source, which is the membrane 
potential across the inner mitochondrial membrane (Figure 12–23). 

The first requirement for energy occurs at the initial stage of the translocation 
process, when the unfolded precursor protein, associated with chaperone pro-
teins, interacts with the import receptors of the TOM complex. As discussed in 
Chapter 6, the binding and release of newly synthesized polypeptides from the 
chaperone proteins requires ATP hydrolysis.

THE TRANSPORT OF PROTEINS INTO MITOCHONDRIA AND CHLOROPLASTS

Figure 12–22 Protein import by 
mitochondria. The N-terminal signal 
sequence of the mitochondrial precursor 
protein is recognized by receptors 
of the TOM complex. The protein is 
then translocated through the TIM23 
complex so that it transiently spans both 
mitochondrial membranes (Movie 12.3). 
The signal sequence is cleaved off by a 
signal peptidase in the matrix space to 
form the mature protein. The free signal 
sequence is then rapidly degraded (not 
shown). 
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Figure 12–23 The role of energy in protein import into the mitochondrial matrix space. (1) Bound cytosolic hsp70 
chaperone is released from the precursor protein in a step that depends on ATP hydrolysis. After initial insertion of the signal 
sequence and of adjacent portions of the polypeptide chain into the TOM complex translocation channel, the signal sequence 
interacts with a TIM complex. (2) The signal sequence is then translocated into the matrix space in a process that requires the 
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translocation channel, using the energy of ATP hydrolysis. 
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Once the signal sequence has passed through the TOM complex and is bound 
to a TIM complex, further translocation through the TIM translocation channel 
requires the membrane potential, which is the electrical component of the elec-
trochemical H+ gradient across the inner membrane (see Figure 11–4). Pumping 
of H+ from the matrix space to the intermembrane space, driven by electron trans-
port processes in the inner membrane (discussed in Chapter 14), maintains the 
electrochemical gradient. The energy in the electrochemical H+ gradient across 
the inner membrane therefore not only powers most of the cell’s ATP synthesis, 
but it also drives the translocation of the positively charged signal sequences 
through the TIM complexes by electrophoresis.

Mitochondrial hsp70 also plays a crucial part in the import process. Mito-
chondria containing mutant forms of the protein fail to import precursor proteins. 
The mitochondrial hsp70 is part of a multisubunit protein assembly that is bound 
to the matrix side of the TIM23 complex and acts as a motor to pull the precursor 
protein into the matrix space. Like its cytosolic cousin, mitochondrial hsp70 has a 
high affinity for unfolded polypeptide chains, and it binds tightly to an imported 
protein chain as soon as the chain emerges from the TIM translocator in the 
matrix space. The hsp70 then undergoes a conformational change and releases 
the protein chain in an ATP-dependent step, exerting a ratcheting/pulling force 
on the protein being imported. This energy-driven cycle of binding and subse-
quent release provides the final driving force needed to complete protein import 
after a protein has initially inserted into the TIM23 complex (see Figure 12–23). 

After the initial interaction with mitochondrial hsp70, many imported matrix 
proteins are passed on to another chaperone protein, mitochondrial hsp60. As 
discussed in Chapter 6, hsp60 helps the unfolded polypeptide chain to fold by 
binding and releasing it through cycles of ATP hydrolysis. 

Bacteria and Mitochondria Use Similar Mechanisms to Insert 
Porins into their Outer Membrane
The outer mitochondrial membrane, like the outer membrane of Gram-negative 
bacteria (see Figure 11–17), contains abundant pore-forming β-barrel proteins 
called porins, and it is thus freely permeable to inorganic ions and metabolites 
(but not to most proteins). In contrast to other outer membrane proteins, which 
are anchored in the membrane through transmembrane α-helical regions, the 
TOM complex cannot integrate porins into the lipid bilayer. Instead, porins are 
first transported unfolded into the intermembrane space, where they transiently 
bind specialized chaperone proteins, which keep the porins from aggregating 
(Figure 12–24A). They then bind to the SAM complex in the outer membrane, 
which both inserts them into the outer membrane and helps them fold properly. 

One of the central subunits of the SAM complex is homologous to a bacterial 
outer membrane protein that helps insert β-barrel proteins into the bacterial outer 
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membrane from the periplasmic space (the equivalent of the intermembrane 
space in mitochondria) (Figure 12–24B). This conserved pathway for inserting 
β-barrel proteins further underscores the endosymbiotic origin of mitochondria. 

Transport Into the Inner Mitochondrial Membrane and 
Intermembrane Space Occurs Via Several Routes
The same mechanism that transports proteins into the matrix space using the 
TOM and TIM23 translocators (see Figure 12–22) also mediates the initial translo-
cation of many proteins that are destined for the inner mitochondrial membrane 
or the intermembrane space. In the most common translocation route, only the 
N-terminal signal sequence of the transported protein actually enters the matrix 
space (Figure 12–25A). A hydrophobic amino acid sequence, strategically placed 
after the N-terminal signal sequence, acts as a stop-transfer sequence, preventing 
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membrane proteins.
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further translocation across the inner membrane. The remainder of the protein 
then crosses the outer membrane through the TOM complex into the intermem-
brane space; the signal sequence is cleaved off in the matrix, and the hydrophobic 
sequence, released from TIM23, remains anchored in the inner membrane. 

In another transport route to the inner membrane or intermembrane space, 
the TIM23 complex initially translocates the entire protein into the matrix space 
(Figure 12–25B). A matrix signal peptidase then removes the N-terminal signal 
sequence, exposing a hydrophobic sequence at the new N-terminus. This signal 
sequence guides the protein to the OXA complex, which inserts the protein into 
the inner membrane. As mentioned earlier, the OXA complex is primarily used 
to insert proteins that are encoded and translated in the mitochondrion into the 
inner membrane, and only a few imported proteins use this pathway. Transloca-
tors that are closely related to the OXA complex are found in the plasma mem-
brane of bacteria and in the thylakoid membrane of chloroplasts, where they 
insert membrane proteins by a similar mechanism.

Many proteins that use these pathways to the inner membrane remain 
anchored there through their hydrophobic signal sequence (see Figure 12–25A,B). 
Others, however, are released into the intermembrane space by a protease that 
removes the membrane anchor (Figure 12–25C). Many of these cleaved proteins 
remain attached to the outer surface of the inner membrane as peripheral sub-
units of protein complexes that also contain transmembrane proteins. 

Certain intermembrane-space proteins that contain cysteine motifs are 
imported by a yet different route. These proteins form a transient covalent disul-
fide bond to the Mia40 protein (Figure 12–25D). The imported proteins are 
then released in an oxidized form containing intrachain disulfide bonds. Mia40 
becomes reduced in the process, and is then reoxidized by passing electrons to 
the electron transport chain in the inner mitochondrial membrane. In this way, 
the energy stored in the redox potential in the mitochondrial electron transport 
chain is tapped to drive protein import.

Mitochondria are the principal sites of ATP synthesis in the cell, but they also 
contain many metabolic enzymes, such as those of the citric acid cycle. Thus, in 
addition to proteins, mitochondria must also transport small metabolites across 
their membranes. While the outer membrane contains porins, which make the 
membrane freely permeable to such small molecules, the inner membrane does 
not. Instead, a family of metabolite-specific transporters transfers a vast number 
of small molecules across the inner membrane. In yeast cells, these transporters 
comprise a family of 35 different proteins, the most abundant of which transport 
ATP, ADP, and phosphate. These are multipass transmembrane proteins, which 
do not have cleavable signal sequences at their N-termini but instead contain 
internal signal sequences. They cross the TOM complex in the outer membrane, 
and intermembrane-space chaperones guide them to the TIM22 complex, which 
inserts them into the inner membrane by a process that requires the membrane 
potential, but not mitochondrial hsp70 or ATP (Figure 12–25E). An energetically 
favorable partitioning of the hydrophobic transmembrane regions into the inner 
membrane is likely to drive this process.

Two Signal Sequences Direct Proteins to the Thylakoid Membrane 
in Chloroplasts
Protein transport into chloroplasts resembles transport into mitochondria. 
Both processes occur post-translationally, use separate translocation complexes 
in each membrane, require energy, and use amphiphilic N-terminal signal 
sequences that are removed after use. With the exception of some of the chap-
erone molecules, however, the protein components that form the translocation 
complexes differ. Moreover, whereas mitochondria harness the electrochemical 
H+ gradient across their inner membrane to drive transport, chloroplasts, which 
have an electrochemical H+ gradient across their thylakoid membrane but not 
their inner membrane, use GTP and ATP hydrolysis to power import across their 
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double membrane. The functional similarities may thus result from convergent 
evolution, reflecting the common requirements for translocation across a double 
membrane. 

Although the signal sequences for import into chloroplasts superficially 
resemble those for import into mitochondria, the same plant cells have both 
mitochondria and chloroplasts, so proteins must partition appropriately between 
the two organelles. In plants, for example, a bacterial enzyme can be directed 
specifically to mitochondria if it is experimentally joined to an N-terminal signal 
sequence of a mitochondrial protein; the same enzyme joined to an N-terminal 
signal sequence of a chloroplast protein ends up in chloroplasts. Thus, the import 
receptors on each organelle distinguish between the different signal sequences.

Chloroplasts have an extra membrane-enclosed compartment, the thylakoid. 
Many chloroplast proteins, including the protein subunits of the photosynthetic 
system and of the ATP synthase (discussed in Chapter 14), are located in the thyla-
koid membrane. Like the precursors of some mitochondrial proteins, the precur-
sors of these proteins are translocated from the cytosol to their final destination 
in two steps. First, they pass across the double membrane into the matrix space 
(called the stroma in chloroplasts), and then they either integrate into the thyla-
koid membrane or translocate into the thylakoid space (Figure 12–26A). The pre-
cursors of these proteins have a hydrophobic thylakoid signal sequence following 
the N-terminal chloroplast signal sequence. After the N-terminal signal sequence 
has been used to import the protein into the stroma, a stromal signal peptidase 
removes it, unmasking the thylakoid signal sequence that initiates transport 
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Figure 12–26 Translocation of 
chloroplast precursor proteins into 
the thylakoid space. (A) The precursor 
protein contains an N-terminal chloroplast 
signal sequence (red), followed immediately 
by a thylakoid signal sequence (brown). 
The chloroplast signal sequence initiates 
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across the thylakoid membrane. There are at least four routes by which proteins 
cross or become integrated into the thylakoid membrane, distinguished by their 
need for different stromal chaperones and energy sources (Figure 12–26B). 

Summary
Although mitochondria and chloroplasts have their own genetic systems, they 
produce only a small proportion of their own proteins. Instead, the two organelles 
import most of their proteins from the cytosol, using similar mechanisms. In both 
cases, proteins are transported in an unfolded state across both outer and inner 
membranes simultaneously into the matrix space or stroma. Both ATP hydrolysis 
and a membrane potential across the inner membrane drive translocation into 
mitochondria, whereas GTP and ATP hydrolysis drive translocation into chloro-
plasts. Chaperone proteins of the cytosolic hsp70 family maintain the precursor 
proteins in an unfolded state, and a second set of hsp70 proteins in the matrix space 
or stroma pulls the polypeptide chain into the organelle. Only proteins that con-
tain a specific signal sequence are translocated. The signal sequence can either be 
located at the N-terminus and cleaved off after import or be internal and retained. 
Transport into the inner membrane sometimes uses a second, hydrophobic signal 
sequence that is unmasked when the first signal sequence is removed. In chloro-
plasts, import from the stroma into the thylakoid can occur by several routes, dis-
tinguished by the chaperones and energy source used.

Peroxisomes
Peroxisomes differ from mitochondria and chloroplasts in many ways. Most 
notably, they are surrounded by only a single membrane, and they do not contain 
DNA or ribosomes. Thus, because peroxisomes lack a genome, all of their pro-
teins are encoded in the nucleus. Peroxisomes acquire most of these proteins by 
selective import from the cytosol, although some of them enter the peroxisome 
membrane via the ER.

Because we do not discuss peroxisomes elsewhere, we shall digress to consider 
some of the functions of this diverse family of organelles, before discussing their 
biosynthesis. Virtually all eukaryotic cells have peroxisomes. They contain oxida-
tive enzymes, such as catalase and urate oxidase, at such high concentrations that, 
in some cells, the peroxisomes stand out in electron micrographs because of the 
presence of a crystalloid protein core (Figure 12–27).

Like mitochondria, peroxisomes are major sites of oxygen utilization. One 
hypothesis is that peroxisomes are a vestige of an ancient organelle that per-
formed all the oxygen metabolism in the primitive ancestors of eukaryotic cells. 
When the oxygen produced by photosynthetic bacteria first accumulated in the 
atmosphere, it would have been highly toxic to most cells. Peroxisomes might 
have lowered the intracellular concentration of oxygen, while also exploiting its 
chemical reactivity to perform useful oxidation reactions. According to this view, 
the later development of mitochondria rendered peroxisomes largely obsolete 
because many of the same biochemical reactions—which had formerly been car-
ried out in peroxisomes without producing energy—were now coupled to ATP 
formation by means of oxidative phosphorylation. The oxidation reactions per-
formed by peroxisomes in present-day cells could therefore partly be those whose 
functions were not taken over by mitochondria.

Peroxisomes Use Molecular Oxygen and Hydrogen Peroxide to 
Perform Oxidation Reactions
Peroxisomes are so named because they usually contain one or more enzymes 
that use molecular oxygen to remove hydrogen atoms from specific organic sub-
strates (designated here as R) in an oxidation reaction that produces hydrogen 
peroxide (H2O2): 

RH2 + O2 → R + H2O2
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Catalase uses the H2O2 generated by other enzymes in the organelle to oxidize 
a variety of other substrates—including formic acid, formaldehyde, and alcohol—
by the “peroxidation” reaction: H2O2 + R′H2 → R′ + 2H2O. This type of oxidation 
reaction is particularly important in liver and kidney cells, where the peroxisomes 
detoxify various harmful molecules that enter the bloodstream. About 25% of the 
ethanol we drink is oxidized to acetaldehyde in this way. In addition, when excess 
H2O2 accumulates in the cell, catalase converts it to H2O through the reaction

2H2O2 → 2H2O + O2

A major function of the oxidation reactions performed in peroxisomes is the 
breakdown of fatty acid molecules. The process, called β oxidation, shortens the 
alkyl chains of fatty acids sequentially in blocks of two carbon atoms at a time, 
thereby converting the fatty acids to acetyl CoA. The peroxisomes then export the 
acetyl CoA to the cytosol for use in biosynthetic reactions. In mammalian cells, β 
oxidation occurs in both mitochondria and peroxisomes; in yeast and plant cells, 
however, this essential reaction occurs exclusively in peroxisomes.

An essential biosynthetic function of animal peroxisomes is to catalyze the 
first reactions in the formation of plasmalogens, which are the most abundant 
class of phospholipids in myelin (Figure 12–28). Plasmalogen deficiencies cause 
profound abnormalities in the myelination of nerve-cell axons, which is one rea-
son why many peroxisomal disorders lead to neurological disease.

Peroxisomes are unusually diverse organelles, and even in the various cell 
types of a single organism they may contain different sets of enzymes. They also 
adapt remarkably to changing conditions. Yeasts grown on sugar, for example, 
have few small peroxisomes. But when some yeasts are grown on methanol, 
numerous large peroxisomes are formed that oxidize methanol; and when grown 
on fatty acids, they develop numerous large peroxisomes that break down fatty 
acids to acetyl CoA by β oxidation.

Peroxisomes are also important in plants. Two types of plant peroxisomes have 
been studied extensively. One is present in leaves, where it participates in photo-
respiration (discussed in Chapter 14) (Figure 12–29A). The other type of peroxi-
some is present in germinating seeds, where it converts the fatty acids stored in 
seed lipids into the sugars needed for the growth of the young plant. Because this 
conversion of fats to sugars is accomplished by a series of reactions known as the 
glyoxylate cycle, these peroxisomes are also called glyoxysomes (Figure 12–29B). 
In the glyoxylate cycle, two molecules of acetyl CoA produced by fatty acid break-
down in the peroxisome are used to make succinic acid, which then leaves the 
peroxisome and is converted into glucose in the cytosol. The glyoxylate cycle does 
not occur in animal cells, and animals are therefore unable to convert the fatty 
acids in fats into carbohydrates.

A Short Signal Sequence Directs the Import of Proteins into 
Peroxisomes
A specific sequence of three amino acids (Ser–Lys–Leu) located at the C-termi-
nus of many peroxisomal proteins functions as an import signal (see Table 12–3,  
p. 648). Other peroxisomal proteins contain a signal sequence near the N-termi-
nus. If either sequence is attached to a cytosolic protein, the protein is imported 
into peroxisomes. The import signals are first recognized by soluble receptor pro-
teins in the cytosol. Numerous distinct proteins, called peroxins, participate in 
the import process, which is driven by ATP hydrolysis. A complex of at least six dif-
ferent peroxins forms a protein translocator in the peroxisome membrane. Even 
oligomeric proteins do not have to unfold to be imported. To allow the passage 
of such compactly folded cargo molecules, the pore formed by the transporter is 
thought to be dynamic in its dimensions, adapting in size to the particular cargo 
molecules to be transported. In this respect, the mechanism differs from that used 
by mitochondria and chloroplasts. One soluble import receptor, the peroxin Pex5 
recognizes the C-terminal peroxisomal import signal. It accompanies its cargo all 
the way into peroxisomes and, after cargo release, cycles back to the cytosol. After 
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Figure 12–27 An electron micrograph 
of three peroxisomes in a rat liver 
cell. The paracrystalline, electron-dense 
inclusions are composed primarily of the 
enzyme urate oxidase. (Courtesy of Daniel 
S. Friend.)
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Figure 12–28 The structure of a 
plasmalogen. Plasmalogens are very 
abundant in the myelin sheaths that 
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delivering its cargo to the peroxisome lumen, Pex5 undergoes ubiquitylation. This 
modification is required to release Pex5 back into the cytosol, where the ubiquitin 
is removed. An ATPase composed of Pex1 and Pex6 harnesses the energy of ATP 
hydrolysis to help release Pex5 from peroxisomes. 

The importance of this import process and of peroxisomes is demonstrated 
by the inherited human disease Zellweger syndrome, in which a defect in import-
ing proteins into peroxisomes leads to a profound peroxisomal deficiency. These 
individuals, whose cells contain “empty” peroxisomes, have severe abnormalities 
in their brain, liver, and kidneys, and they die soon after birth. A mutation in the 
gene encoding peroxin Pex5 causes one form of the disease. A defect in Pex7, the 
receptor for the N-terminal import signal, causes a milder peroxisomal disease.

It has long been debated whether new peroxisomes arise from preexisting ones 
by organelle growth and fission—as mentioned earlier for mitochondria and plas-
tids—or whether they derive as a specialized compartment from the endoplasmic 
reticulum (ER). Aspects of both views are true (Figure 12–30). Most peroxisomal 
membrane proteins are made in the cytosol and insert into the membrane of 
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Figure 12–29 Electron micrographs of two types of peroxisomes found in plant cells. (A) A peroxisome with a 
paracrystalline core in a tobacco leaf mesophyll cell. Its close association with chloroplasts is thought to facilitate the 
exchange of materials between these organelles during photorespiration. The vacuole in plant cells is equivalent to the 
lysosome in animal cells. (B) Peroxisomes in a fat-storing cotyledon cell of a tomato seed 4 days after germination. Here the 
peroxisomes (glyoxysomes) are associated with the lipid droplets that store fat, reflecting their central role in fat mobilization and 
gluconeogenesis during seed germination. (A, from S.E. Frederick and E.H. Newcomb, J. Cell Biol. 43:343–353, 1969. With 
permission from The Rockefeller Press; B, from W.P. Wergin, P.J. Gruber and E.H. Newcomb, J. Ultrastruct. Res. 30:533–557, 
1970. With permission from Academic Press.)
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Figure 12–30 A model that explains 
how peroxisomes proliferate and how 
new peroxisomes arise. Peroxisomal 
precursor vesicles bud from the ER. 
At least two peroxisomal membrane 
proteins, Pex3 and Pex15, follow this 
route. The machinery that drives the 
budding reaction and that selects only 
peroxisomal proteins for packaging into 
these vesicles depends on Pex19 and 
other cytosolic proteins that are still 
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for the import of peroxisomal proteins 
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new copies of the import receptors and 
translocator components. Presumably, 
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imported, although some may derive 
directly from the ER in the membrane of 
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preexisting peroxisomes, but others are first integrated into the ER membrane, 
where they are packaged into specialized peroxisomal precursor vesicles. New 
precursor vesicles may then fuse with one another and begin importing addi-
tional peroxisomal proteins, using their own protein import machinery to grow 
into mature peroxisomes, which can undergo cycles of growth and fission. 

Summary
Peroxisomes are specialized for carrying out oxidation reactions using molecular 
oxygen. They generate hydrogen peroxide, which they employ for oxidative pur-
poses—and contain catalase to destroy the excess. Like mitochondria and plastids, 
peroxisomes are self-replicating organelles. Because they do not contain DNA or 
ribosomes, however, all of their proteins are encoded in the cell nucleus. Some of 
these proteins are conveyed to peroxisomes via peroxisomal precursor vesicles that 
bud from the ER, but most are synthesized in the cytosol and directly imported. A 
specific sequence of three amino acids near the C-terminus of many of the latter pro-
teins functions as a peroxisomal import signal. The mechanism of protein import 
differs from that of mitochondria and chloroplasts, in that even oligomeric proteins 
are imported from the cytosol without unfolding.

The Endoplasmic Reticulum
All eukaryotic cells have an endoplasmic reticulum (ER). Its membrane typi-
cally constitutes more than half of the total membrane of an average animal cell 
(see Table 12–2, p. 643). The ER is organized into a netlike labyrinth of branching 
tubules and flattened sacs that extends throughout the cytosol (Figure 12–31 and 
Movie 12.4). The tubules and sacs interconnect, and their membrane is continu-
ous with the outer nuclear membrane; the compartment that they enclose there-
fore is also continuous with the space between the inner and outer nuclear mem-
branes. Thus, the ER and nuclear membranes form a continuous sheet enclosing 
a single internal space, called the ER lumen or the ER cisternal space, which often 
occupies more than 10% of the total cell volume (see Table 12–1, p. 643).

As mentioned at the beginning of this chapter, the ER has a central role in both 
lipid and protein biosynthesis, and it also serves as an intracellular Ca2+ store 
that is used in many cell signaling responses (discussed in Chapter 15). The ER 
membrane is the site of production of all the transmembrane proteins and lip-
ids for most of the cell’s organelles, including the ER itself, the Golgi apparatus, 
lysosomes, endosomes, secretory vesicles, and the plasma membrane. The ER 
membrane is also the site at which most of the lipids for mitochondrial and per-
oxisomal membranes are made. In addition, almost all of the proteins that will be 
secreted to the cell exterior—plus those destined for the lumen of the ER, Golgi 
apparatus, or lysosomes—are initially delivered to the ER lumen.

THE ENDOPLASMIC RETICULUM

MBoC6 mp689/p723

NUCLEUS

PEROXISOMES

MITOCHONDRIA

PLASTIDS

ENDOPLASMIC RETICULUM

CELL EXTERIOR

GOLGI

LATE ENDOSOME

LYSOSOME

EARLY ENDOSOME

SECRETORY
VESICLES

CYTOSOL

Figure 12–31 Fluorescent micrographs of 
the endoplasmic reticulum. (A) An animal 
cell in tissue culture that was genetically 
engineered to express an ER membrane 
protein fused to a fluorescent protein. The 
ER extends as a network of tubules and 
sheets throughout the entire cytosol, so that 
all regions of the cytosol are close to some 
portion of the ER membrane. The outer 
nuclear membrane, which is continuous 
with the ER, is also stained. (B) Part of 
an ER network in a living plant cell that 
was genetically engineered to express a 
fluorescent protein in the ER. (A, courtesy of 
Patrick Chitwood and Gia Voeltz; B, courtesy 
of Petra Boevink and Chris Hawes.) 
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The ER Is Structurally and Functionally Diverse
While the various functions of the ER are essential to every cell, their relative 
importance varies greatly between individual cell types. To meet different func-
tional demands, distinct regions of the ER become highly specialized. We observe 
such functional specialization as dramatic changes in ER structure, and different 
cell types can therefore possess characteristically different types of ER membrane. 
One of the most remarkable ER specializations is the rough ER.

Mammalian cells begin to import most proteins into the ER before complete 
synthesis of the polypeptide chain—that is, import is a co-translational process 
(Figure 12–32A). In contrast, the import of proteins into mitochondria, chloro-
plasts, nuclei, and peroxisomes is a post-translational process (Figure 12–32B). In 
co-translational transport, the ribosome that is synthesizing the protein is attached 
directly to the ER membrane, enabling one end of the protein to be translocated 
into the ER while the rest of the polypeptide chain is being synthesized. These 
membrane-bound ribosomes coat the surface of the ER, creating regions termed 
rough endoplasmic reticulum, or rough ER; regions of ER that lack bound ribo-
somes are called smooth endoplasmic reticulum, or smooth ER (Figure 12–33).

Most cells have scanty regions of smooth ER, and the ER is often partly smooth 
and partly rough. Areas of smooth ER from which transport vesicles carrying 
newly synthesized proteins and lipids bud off for transport to the Golgi apparatus 
are called transitional ER. In certain specialized cells, the smooth ER is abundant 
and has additional functions. It is prominent, for example, in cells that specialize 
in lipid metabolism, such as cells that synthesize steroid hormones from choles-
terol; the expanded smooth ER accommodates the enzymes that make choles-
terol and modify it to form the hormones (see Figure 12–33B).

The main cell type in the liver, the hepatocyte, also has a substantial amount 
of smooth ER. It is the principal site of production of lipoprotein particles, which 
carry lipids via the bloodstream to other parts of the body. The enzymes that 
synthesize the lipid components of the particles are located in the membrane of 
the smooth ER, which also contains enzymes that catalyze a series of reactions 
to detoxify both lipid-soluble drugs and various harmful compounds produced 
by metabolism. The most extensively studied of these detoxification reactions are 
carried out by the cytochrome P450 family of enzymes, which catalyze a series of 
reactions in which water-insoluble drugs or metabolites that would otherwise 
accumulate to toxic levels in cell membranes are rendered sufficiently water-solu-
ble to leave the cell and be excreted in the urine. Because the rough ER alone can-
not house enough of these and other necessary enzymes, a substantial portion of 
the membrane in a hepatocyte normally consists of smooth ER (see Table 12–2).

Another crucially important function of the ER in most eukaryotic cells is to 
sequester Ca2+ from the cytosol. The release of Ca2+ into the cytosol from the ER, 
and its subsequent reuptake, occurs in many rapid responses to extracellular 
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Figure 12–32 Co-translational and post-
translational protein translocation. 
(A) Ribosomes bind to the ER membrane 
during co-translational translocation. (B) By 
contrast, cytosolic ribosomes complete the 
synthesis of a protein and release it prior 
to post-translational translocation. In both 
cases, the protein is directed to the ER by 
an ER signal sequence (red and orange).
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signals, as discussed in Chapter 15. A Ca2+ pump transports Ca2+ from the cytosol 
into the ER lumen. A high concentration of Ca2+-binding proteins in the ER facil-
itates Ca2+ storage. In some cell types, and perhaps in most, specific regions of 
the ER are specialized for Ca2+ storage. Muscle cells have an abundant, modified 
smooth ER called the sarcoplasmic reticulum. The release and reuptake of Ca2+ by 
the sarcoplasmic reticulum trigger myofibril contraction and relaxation, respec-
tively, during each round of muscle contraction (discussed in Chapter 16).

To study the functions and biochemistry of the ER, it is necessary to isolate 
it. This may seem to be a hopeless task because the ER is intricately interleaved 
with other components of the cytoplasm. Fortunately, when tissues or cells are 
disrupted by homogenization, the ER breaks into fragments, which reseal to 
form small (~100–200 nm in diameter) closed vesicles called microsomes. Mic-
rosomes are relatively easy to purify. To the biochemist, microsomes represent 
small authentic versions of the ER, still capable of protein translocation, protein 
glycosylation (discussed later), Ca2+ uptake and release, and lipid synthesis. Mic-
rosomes derived from rough ER are studded with ribosomes and are called rough 
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Figure 12–33 The rough and smooth ER. (A) An electron micrograph of the rough ER in a pancreatic exocrine  
cell that makes and secretes large amounts of digestive enzymes every day. The cytosol is filled with closely packed sheets 
of ER membrane that is studded with ribosomes. At the top left is a portion of the nucleus and its nuclear envelope; note that 
the outer nuclear membrane, which is continuous with the ER, is also studded with ribosomes. (B) Abundant smooth ER in a 
steroid-hormone-secreting cell. This electron micrograph is of a testosterone-secreting Leydig cell in the human testis.  
(C) A three-dimensional reconstruction of a region of smooth ER and rough ER in a liver cell. The rough ER forms oriented 
stacks of flattened cisternae, each having a lumenal space 20–30 nm wide. The smooth ER membrane is connected to 
these cisternae and forms a fine network of tubules 30–60 nm in diameter. The ER lumen is colored green. (D) A tomographic 
reconstruction of a portion of the ER network in a yeast cell. Membrane-bound ribosomes (tiny dark spheres) are seen in both 
flat sheets and tubular regions of irregular diameter, demonstrating that the ribosomes bind to ER membranes of different 
curvature in these cells. (A, courtesy of Lelio Orci; B, courtesy of Daniel S. Friend; C, after R.V. Krstić   , Ultrastructure of the 
Mammalian Cell. New York: Springer-Verlag, 1979; D, from M. West et al., J. Cell Biol. 193:333–346, 2011. With permission 
from Rockefeller University Press.)
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microsomes. The ribosomes are always found on the outside surface, so the inte-
rior of the microsome is biochemically equivalent to the lumen of the ER (Figure 
12–34A). 

Many vesicles similar in size to rough microsomes, but lacking attached ribo-
somes, are also found in cell homogenates. Such smooth microsomes are derived 
in part from smooth portions of the ER and in part from vesiculated fragments of 
the plasma membrane, Golgi apparatus, endosomes, and mitochondria (the ratio 
depending on the tissue). Thus, whereas rough microsomes are clearly derived 
from rough portions of ER, it is not easy to separate smooth microsomes derived 
from different organelles. The smooth microsomes prepared from liver or muscle 
cells are an exception. Because of the unusually large quantities of smooth ER or 
sarcoplasmic reticulum, respectively, most of the smooth microsomes in homog-
enates of these tissues are derived from the smooth ER or sarcoplasmic reticu-
lum. The ribosomes attached to rough microsomes make them more dense than 
smooth microsomes. As a result, we can use equilibrium centrifugation to sepa-
rate the rough and smooth microsomes (Figure 12–34B). Microsomes have been 
invaluable in elucidating the molecular aspects of ER function, as we discuss next.

Signal Sequences Were First Discovered in Proteins Imported into 
the Rough ER
The ER captures selected proteins from the cytosol as they are being synthesized. 
These proteins are of two types: transmembrane proteins, which are only partly 
translocated across the ER membrane and become embedded in it, and water-sol-
uble proteins, which are fully translocated across the ER membrane and are 
released into the ER lumen. Some of the transmembrane proteins function in the 
ER, but many are destined to reside in the plasma membrane or the membrane of 
another organelle. The water-soluble proteins are destined either for secretion or 
for residence in the lumen of the ER or of another organelle. All of these proteins, 
regardless of their subsequent fate, are directed to the ER membrane by an ER 
signal sequence, which initiates their translocation by a common mechanism.

Signal sequences (and the signal sequence strategy of protein sorting) were 
first discovered in the early 1970s in secreted proteins that are translocated across 
the ER membrane as a first step toward their eventual discharge from the cell. 
In the key experiment, the mRNA encoding a secreted protein was translated by 
ribosomes in vitro. When microsomes were omitted from this cell-free system, 
the protein synthesized was slightly larger than the normal secreted protein. In 
the presence of microsomes derived from the rough ER, however, a protein of the 
correct size was produced. According to the signal hypothesis, the size difference 
reflects the initial presence of a signal sequence that directs the secreted protein 
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Figure 12–34 The isolation of purified 
rough and smooth microsomes 
from the ER. (A) A thin section electron 
micrograph of the purified rough ER 
fraction shows an abundance of ribosome-
studded vesicles. (B) When sedimented to 
equilibrium through a gradient of sucrose, 
the two types of microsomes separate from 
each other on the basis of their different 
densities. Note that the smooth fraction will 
also contain non-ER-derived material.  
(A, courtesy of George Palade.)
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to the ER membrane and is then cleaved off by a signal peptidase in the ER mem-
brane before the polypeptide chain has been completed (Figure 12–35). Cell-free 
systems in which proteins are imported into microsomes have provided powerful 
procedures for identifying, purifying, and studying the various components of the 
molecular machinery responsible for the ER import process.

A Signal-Recognition Particle (SRP) Directs the ER Signal 
Sequence to a Specific Receptor in the Rough ER Membrane
The ER signal sequence is guided to the ER membrane by at least two compo-
nents: a signal-recognition particle (SRP), which cycles between the ER mem-
brane and the cytosol and binds to the signal sequence, and an SRP receptor in 
the ER membrane. The SRP is a large complex; in animal cells, it consists of six 
different polypeptide chains bound to a single small RNA molecule. While the 
SRP and SRP receptor have fewer subunits in bacteria, homologs are present in 
all cells, indicating that this protein-targeting mechanism arose early in evolution 
and has been conserved.

ER signal sequences vary greatly in amino acid sequence, but each has eight or 
more nonpolar amino acids at its center (see Table 12–3, p. 648). How can the SRP 
bind specifically to so many different sequences? The answer has come from the 
crystal structure of the SRP protein, which shows that the signal-sequence-bind-
ing site is a large hydrophobic pocket lined by methionines. Because methionines 
have unbranched, flexible side chains, the pocket is sufficiently plastic to accom-
modate hydrophobic signal sequences of different sequences, sizes, and shapes. 

The SRP is a rodlike structure, which wraps around the large ribosomal subunit, 
with one end binding to the ER signal sequence as it emerges from the ribosome 
as part of the newly made polypeptide chain; the other end blocks the elongation 
factor binding site at the interface between the large and small ribosomal subunits 
(Figure 12–36). This block halts protein synthesis as soon as the signal peptide has 
emerged from the ribosome. The transient pause presumably gives the ribosome 
enough time to bind to the ER membrane before completion of the polypeptide 
chain, thereby ensuring that the protein is not released into the cytosol. This safety 
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A simplified view of protein translocation 
across the ER membrane, as originally 
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of the ER immediately after its synthesis 
is completed. The translocator is closed 
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device may be especially important for secreted and lysosomal hydrolases, which 
could wreak havoc in the cytosol; cells that secrete large amounts of hydrolases, 
however, take the added precaution of having high concentrations of hydrolase 
inhibitors in their cytosol. The pause also ensures that large portions of a protein 
that could fold into a compact structure are not made before reaching the trans-
locator in the ER membrane. Thus, in contrast to the post-translational import of 
proteins into mitochondria and chloroplasts, chaperone proteins are not required 
to keep the protein unfolded.

When a signal sequence binds, SRP exposes a binding site for the SRP receptor 
(see Figure 12–36B,C), which is a transmembrane protein complex in the rough 
ER membrane. The binding of the SRP to its receptor brings the SRP–ribosome 
complex to an unoccupied protein translocator in the same membrane. The SRP 
and SRP receptor are then released, and the translocator transfers the growing 
polypeptide chain across the membrane (Figure 12–37).

This co-translational transfer process creates two spatially separate popula-
tions of ribosomes in the cytosol. Membrane-bound ribosomes, attached to the 
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Figure 12–36 The signal-recognition particle (SRP). (A) A mammalian SRP is a rodlike 
ribonucleoprotein complex containing six protein subunits (brown) and one RNA molecule (blue). 
The SRP RNA forms a backbone that links the protein domain containing the signal-sequence-
binding pocket to the domain responsible for pausing translation. Crystal structures of various 
SRP pieces from different species are assembled here into a composite model to approximate the 
structure of a complete SRP. (B) The three-dimensional outline of the SRP bound to a ribosome 
was determined by cryoelectron microscopy. SRP binds to the large ribosomal subunit so that its 
signal-sequence-binding pocket is positioned near the growing polypeptide chain exit site, and its 
translational pause domain is positioned at the interface between the ribosomal subunits, where it 
interferes with elongation factor binding. (C) As a signal sequence emerges from the ribosome and 
binds to the SRP, a conformational change in the SRP exposes a binding site for the SRP receptor. 
(B, adapted from M. Halic et al., Nature 427:808–814, 2004. With permission from Macmillan 
Publishers Ltd.)
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Figure 12–37 How ER signal sequences 
and SRP direct ribosomes to the ER 
membrane. The SRP and its receptor 
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the exposed ER signal sequence and 
the ribosome, thereby inducing a pause 
in translation. The SRP receptor in the 
ER membrane, which in animal cells is 
composed of two different polypeptide 
chains, binds the SRP–ribosome complex 
and directs it to the translocator. In a 
poorly understood reaction, the SRP and 
SRP receptor are then released, leaving 
the ribosome bound to the translocator 
in the ER membrane. The translocator 
then inserts the polypeptide chain into 
the membrane and transfers it across 
the lipid bilayer. Because one of the SRP 
proteins and both chains of the SRP 
receptor contain GTP-binding domains, 
it is thought that conformational changes 
that occur during cycles of GTP binding 
and hydrolysis (discussed in Chapter 
15) ensure that SRP release occurs only 
after the ribosome has become properly 
engaged with the translocator in the ER 
membrane. The translocator is closed 
until the ribosome has bound, so that the 
permeability barrier of the ER membrane is 
maintained at all times. 
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cytosolic side of the ER membrane, are engaged in the synthesis of proteins that 
are being concurrently translocated into the ER. Free ribosomes, unattached to 
any membrane, synthesize all other proteins encoded by the nuclear genome. 
Membrane-bound and free ribosomes are structurally and functionally identical. 
They differ only in the proteins they are making at any given time.

Since many ribosomes can bind to a single mRNA molecule, a polyribosome 
is usually formed. If the mRNA encodes a protein with an ER signal sequence, 
the polyribosome becomes attached to the ER membrane, directed there by the 
signal sequences on multiple growing polypeptide chains. The individual ribo-
somes associated with such an mRNA molecule can return to the cytosol when 
they finish translation and intermix with the pool of free ribosomes. The mRNA 
itself, however, remains attached to the ER membrane by a changing population 
of ribosomes, each transiently held at the membrane by the translocator (Figure 
12–38).

The Polypeptide Chain Passes Through an Aqueous Channel in 
the Translocator
It had long been debated whether polypeptide chains are transferred across the 
ER membrane in direct contact with the lipid bilayer or through a channel in a 
protein translocator. The debate ended with the identification of the transloca-
tor, which was shown to form a water-filled channel in the membrane through 
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Figure 12–38 Free and membrane-bound polyribosomes. (A) A common pool of ribosomes synthesizes the proteins that 
stay in the cytosol and those that are transported into the ER. The ER signal sequence on a newly formed polypeptide chain 
binds to SRP, which directs the translating ribosome to the ER membrane. The mRNA molecule remains permanently bound 
to the ER as part of a polyribosome, while the ribosomes that move along it are recycled; at the end of each round of protein 
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of polyribosomes attached to the ER membrane. The plane of section in some places cuts through the ER roughly parallel to 
the membrane, giving a face-on view of the rosettelike pattern of the polyribosomes. (B, courtesy of George Palade.)
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which the polypeptide chain passes. The core of the translocator, called the Sec61 
complex, is built from three subunits that are highly conserved from bacteria to 
eukaryotic cells. The structure of the Sec61 complex suggests that α helices con-
tributed by the largest subunit surround a central channel through which the 
polypeptide chain traverses the membrane (Figure 12–39). The channel is gated 
by a short α helix that is thought to keep the translocator closed when it is idle and 
to move aside when it is engaged in passing a polypeptide chain. According to 
this view, the pore is a dynamic gated channel that opens only transiently when a 
polypeptide chain traverses the membrane. In an idle translocator, it is important 
to keep the channel closed, so that the membrane remains impermeable to ions, 
such as Ca2+, which otherwise would leak out of the ER. As a polypeptide chain is 
translocating, a ring of hydrophobic amino acid side chains is thought to provide 
a flexible seal to prevent ion leaks.

The structure of the Sec61 complex suggests that the pore can also open along 
a seam on its side. Indeed, some structures of the translocator show it locked in an 
open-seam conformation. This opening allows a translocating peptide chain lat-
eral access into the hydrophobic core of the membrane, a process that is import-
ant both for the release of a cleaved signal peptide into the membrane (see Figure 
12–35) and for the integration of transmembrane proteins into the bilayer, as we 
discuss later.
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Figure 12–39 Structure of the Sec61 complex. (A) A side view (left) and a top view (right, seen 
from the cytosol) of the structure of the Sec61 complex of the archaeon Methanococcus jannaschii. 
The Sec61α subunit has an inverted repeat structure (see Figure 11–10) and is shown in blue and 
beige to indicate this pseudo-symmetry; the two smaller β and γ subunits are shown in gray. In 
the side view, some helices in front have been omitted to make the inside of the pore visible. The 
yellow short helix is thought to form a plug that seals the pore when the translocator is closed. To 
open, the complex rearranges itself to move the plug helix out of the way, as indicated by the red 
arrow. A ring of hydrophobic amino acid side chains is thought to form a tight-fitting diaphragm 
around translocating polypeptide chain to prevent leaks of other molecules across the membrane. 
The pore of the Sec61 complex can also open sideways at a lateral seam. (B) Models of the closed 
and open states of the translocator are shown in top view, illustrating how a signal sequence (or a 
transmembrane segment) could be released into the lipid bilayer after opening of the seam. (PDB 
codes: 1RH5 and 1RHZ.)



	  677

In eukaryotic cells, four Sec61 complexes form a large translocator assembly 
that can be visualized on ER-bound ribosomes after detergent solubilization of 
the ER membrane (Figure 12–40). It is likely that this assembly includes other 
membrane complexes that associate with the translocator, such as enzymes that 
modify the growing polypeptide chain, including oligosaccharide transferase and 
the signal peptidase. The assembly of a translocator with these accessory compo-
nents is called the translocon.

Translocation Across the ER Membrane Does Not Always Require 
Ongoing Polypeptide Chain Elongation
As we have seen, translocation of proteins into mitochondria, chloroplasts, and 
peroxisomes occurs post-translationally, after the protein has been made and 
released into the cytosol, whereas translocation across the ER membrane usually 
occurs during translation (co-translationally). This explains why ribosomes are 
bound to the ER but not to other organelles. 

Some completely synthesized proteins, however, are imported into the ER, 
demonstrating that translocation does not always require ongoing translation. 
Post-translational protein translocation is especially common across the yeast 
ER membrane and the bacterial plasma membrane (which is thought to be evo-
lutionarily related to the ER). To function in post-translational translocation, the 
ER translocator needs accessory proteins that feed the polypeptide chain into the 
pore and drive translocation (Figure 12–41). In bacteria, a translocation motor 
protein, the SecA ATPase, attaches to the cytosolic side of the translocator, where it 
undergoes cyclic conformational changes driven by ATP hydrolysis. Each time an 
ATP is hydrolyzed, a portion of the SecA protein inserts into the pore of the trans-
locator, pushing a short segment of the passenger protein with it. As a result of this 
ratchet mechanism, the SecA ATPase progressively pushes the polypeptide chain 
of the transported protein across the membrane. 

Eukaryotic cells use a different set of accessory proteins that associate with the 
Sec61 complex. These proteins span the ER membrane and use a small domain on 
the lumenal side of the ER membrane to deposit an hsp70-like chaperone protein 
(called BiP, for binding protein) onto the polypeptide chain as it emerges from the 
pore into the ER lumen. ATP-dependent cycles of BiP binding and release drive 
unidirectional translocation, as described earlier for the mitochondrial hsp70 
proteins that pull proteins across mitochondrial membranes. 

Proteins that are transported into the ER by a post-translational mechanism 
are first released into the cytosol, where they bind to chaperone proteins to pre-
vent folding, as discussed earlier for proteins destined for mitochondria and chlo-
roplasts.

In Single-Pass Transmembrane Proteins, a Single Internal ER 
Signal Sequence Remains in the Lipid Bilayer as a Membrane-
spanning α Helix
The ER signal sequence in the growing polypeptide chain is thought to trigger the 
opening of the pore in the Sec61 protein translocator: after the signal sequence is 
released from the SRP and the growing chain has reached a sufficient length, the 
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Figure 12–40 A ribosome (green) bound to the ER protein translocator 
(blue). (A) A side-view reconstruction of the complex from electron 
microscopic images. (B) A view of the translocator seen from the ER lumen. 
The translocator contains Sec61, accessory proteins, and detergent used in 
the preparation. Domains of accessory proteins extend across the membrane 
and form the lumenal bulge. (C) A schematic drawing of a membrane-bound 
ribosome attached to the translocator, indicating the location of the tunnel 
in the large ribosomal subunit through which the growing polypeptide chain 
exits from the ribosome. The mRNA (not shown) would be located between 
the small and large ribosomal subunits. (Adapted from J.F. Ménétret et al., J. 
Mol. Biol. 348:445–457, 2005. With permission from Academic Press.)
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signal sequence binds to a specific site inside the pore itself, thereby opening the 
pore. An ER signal sequence is therefore recognized twice: first by an SRP in the 
cytosol and then by a binding site in the pore of the protein translocator, where it 
serves as a start-transfer signal (or start-transfer peptide) that opens the pore (for 
example, see Figure 12–35 for how this works for a soluble protein). Dual recog-
nition may help ensure that only appropriate proteins enter the lumen of the ER.

While bound in the translocation pore, a signal sequence is in contact not only 
with the Sec61 complex, which forms the walls of the pore, but also, along the lat-
eral seam, with the hydrophobic core of the lipid bilayer. This was shown in chem-
ical cross-linking experiments in which the signal sequence and the hydrocarbon 
chains of lipids were covalently linked together. When the nascent polypeptide 
chain grew long enough, the ER signal peptidase cleaved off the signal sequence 
and released it from the pore into the membrane, where it was rapidly degraded 
to amino acids by other proteases in the ER membrane. To release the signal 
sequence into the membrane, the translocator opens laterally along the seam (see 
Figures 12–35 and 12–39). The translocator is therefore gated in two directions: 
it opens to form a pore across the membrane to let the hydrophilic portions of 
proteins cross the lipid bilayer, and it opens laterally within the membrane to let 
hydrophobic portions of proteins partition into the lipid bilayer. Lateral gating of 
the pore is an essential step during the integration of transmembrane proteins.

The integration of membrane proteins requires that some parts of the poly-
peptide chain be translocated across the lipid bilayer whereas others are not. 
Despite this additional complexity, all modes of insertion of membrane proteins 
are simply variants of the sequence of events just described for transferring a sol-
uble protein into the lumen of the ER. We begin by describing the three ways in 
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with the Sec61 protein translocator. The growing polypeptide chain is threaded across the membrane as it is made. No 
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the Sec62, 63, 71, 72 complex is found exclusively in eukaryotic cells. (Adapted from P. Walter and A.E. Johnson, Annu. Rev. 
Cell Biol. 10:87–119, 1994. With permission from Annual Reviews.)
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which single-pass transmembrane proteins (see Figure 10–17) become inserted 
into the ER membrane.

In the simplest case, an N-terminal signal sequence initiates translocation, just 
as for a soluble protein, but an additional hydrophobic segment in the polypep-
tide chain stops the transfer process before the entire polypeptide chain is trans-
located. This stop-transfer signal anchors the protein in the membrane after the 
ER signal sequence (the start-transfer signal) has been cleaved off and released 
from the translocator (Figure 12–42). The lateral gating mechanism transfers 
the stop-transfer sequence into the bilayer, where it remains as a single α-helical 
membrane-spanning segment, with the N-terminus of the protein on the lumenal 
side of the membrane and the C-terminus on the cytosolic side.

In the other two cases, the signal sequence is internal, rather than at the N-ter-
minal end of the protein. As for an N-terminal ER signal sequence, the SRP binds 
to an internal signal sequence by recognizing its hydrophobic α-helical features. 
The SRP brings the ribosome making the protein to the ER membrane, and the 
ER signal sequence then serves as a start-transfer signal that initiates the pro-
tein’s translocation. After release from the translocator, the internal start-transfer 
sequence remains in the lipid bilayer as a single membrane-spanning α helix.

Internal start-transfer sequences can bind to the translocation apparatus in 
either of two orientations; this in turn determines which protein segment (the one 
preceding or the one following the start-transfer sequence) is moved across the 
membrane into the ER lumen. In one case, the resulting membrane protein has its 
C-terminus on the lumenal side (pathway A in Figure 12–43), while in the other, it 
has its N-terminus on the lumenal side (pathway B in Figure 12–43). The orienta-
tion of the start-transfer sequence depends on the distribution of nearby charged 
amino acids, as described in the figure legend.

Combinations of Start-Transfer and Stop-Transfer Signals 
Determine the Topology of Multipass Transmembrane Proteins
In multipass transmembrane proteins, the polypeptide chain passes back and 
forth repeatedly across the lipid bilayer as hydrophobic α helices (see Figure 
10–17). It is thought that an internal signal sequence serves as a start-transfer 
signal in these proteins to initiate translocation, which continues until the trans-
locator encounters a stop-transfer sequence; in double-pass transmembrane  
proteins, for example, the polypeptide can then be released into the bilayer  
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(Figure 12–44). In more complex multipass proteins, in which many hydro-
phobic α helices span the bilayer, a second start-transfer sequence reinitiates 
translocation further down the polypeptide chain until the next stop-transfer 
sequence causes polypeptide release, and so on for subsequent start-transfer and 
stop-transfer sequences (Figure 12–45 and Movie 12.5).

Hydrophobic start-transfer and stop-transfer signal sequences both act to fix 
the topology of the protein in the membrane by locking themselves into the mem-
brane as membrane-spanning α helices; and they can do this in either orienta-
tion. Whether a given hydrophobic signal sequence functions as a start-transfer 
or stop-transfer sequence must depend on its location in a polypeptide chain, 
since its function can be switched by changing its location in the protein by using 
recombinant DNA techniques. Thus, the distinction between start-transfer and 
stop-transfer sequences results mostly from their relative order in the growing 
polypeptide chain. It seems that the SRP begins scanning an unfolded polypep-
tide chain for hydrophobic segments at its N-terminus and proceeds toward the 
C-terminus, in the direction that the protein is synthesized. By recognizing the 
first appropriate hydrophobic segment to emerge from the ribosome, the SRP 
sets the “reading frame” for membrane integration: after the SRP initiates trans-
location, the translocator recognizes the next appropriate hydrophobic segment 
in the direction of transfer as a stop-transfer sequence, causing the region of the 
polypeptide chain in between to be threaded across the membrane. A similar 

Figure 12–43 Integration of a single-
pass transmembrane protein with 
an internal signal sequence into the 
ER membrane. An internal ER signal 
sequence that functions as a start-transfer 
signal can bind to the translocator in one 
of two ways, leading to a membrane 
protein that has either its C-terminus 
(pathway A) or its N-terminus (pathway 
B) in the ER lumen. Proteins are directed 
into either pathway by features in the 
polypeptide chain flanking the internal 
start-transfer sequence: if there are 
more positively charged amino acids 
immediately preceding the hydrophobic 
core of the start-transfer sequence than 
there are following it, the membrane 
protein is inserted into the translocator 
in the orientation shown in pathway 
A, whereas if there are more positively 
charged amino acids immediately following 
the hydrophobic core of the start-transfer 
sequence than there are preceding it, 
the membrane protein is inserted into 
the translocator in the orientation shown 
in pathway B. Because translocation 
cannot start before a start-transfer 
sequence appears outside the ribosome, 
translocation of the N-terminal portion of 
the protein shown in (B) can occur only 
after this portion has been fully synthesized.
   Note that there are two ways to insert a 
single-pass membrane-spanning protein 
whose N-terminus is located in the ER 
lumen: that shown in Figure 12–42 and that 
shown here in (B).
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scanning process continues until all of the hydrophobic regions in the protein 
have been inserted into the membrane as transmembrane α helices.

Because membrane proteins are always inserted from the cytosolic side of the 
ER in this programmed manner, all copies of the same polypeptide chain will have 
the same orientation in the lipid bilayer. This generates an asymmetrical ER mem-
brane in which the protein domains exposed on one side are different from those 
exposed on the other side. This asymmetry is maintained during the many mem-
brane budding and fusion events that transport the proteins made in the ER to 
other cell membranes (discussed in Chapter 13). Thus, the way in which a newly 
synthesized protein is inserted into the ER membrane determines the orientation 
of the protein in all of the other membranes as well.

When proteins are extracted with detergent from a membrane and then recon-
stituted into artificial lipid vesicles, a random mixture of right-side-out and inside-
out protein orientations usually results. Thus, the protein asymmetry observed in 
cell membranes seems not to be an inherent property of the proteins, but instead 
results solely from the process by which proteins are inserted into the ER mem-
brane from the cytosol.
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Figure 12–45 The insertion of the 
multipass membrane protein rhodopsin 
into the ER membrane. Rhodopsin is the 
light-sensitive protein in rod photoreceptor 
cells in the mammalian retina (discussed 
in Chapter 15). (A) A hydropathy plot 
(see Figure 10–20) identifies seven short 
hydrophobic regions in rhodopsin. (B) The 
hydrophobic region nearest the N-terminus 
serves as a start-transfer sequence that 
causes the preceding N-terminal portion 
of the protein to pass across the ER 
membrane. Subsequent hydrophobic 
sequences function in alternation as start-
transfer and stop-transfer sequences. The 
green arrows indicate the paired start and 
stop signals inserted into the translocator. 
(C) The final integrated rhodopsin has its 
N-terminus located in the ER lumen and its 
C-terminus located in the cytosol. The blue 
hexagons represent covalently attached 
oligosaccharides. 
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ER Tail-anchored Proteins Are Integrated into the ER Membrane 
by a Special Mechanism
Many important membrane proteins are anchored in the membrane by a C-ter-
minal transmembrane, hydrophobic α helix. These ER tail-anchored proteins 
include a large number of SNARE protein subunits that guide vesicular traffic 
(discussed in Chapter 13). When such a tail-anchored protein inserts into the ER 
membrane from the cytosol, only a few amino acids that follow the transmem-
brane α helix on its C-terminal side are translocated into the ER lumen, while 
most of the protein remains in the cytosol. Because of the unique position of the 
transmembrane α helix in the protein sequence, translation terminates while the 
C-terminal amino acids that will form the transmembrane α helix have not yet 
emerged from the ribosome exit tunnel. Recognition by SRP is therefore not pos-
sible. It was long thought that these proteins are released from the ribosome and 
the hydrophobic C-terminal tail spontaneously partitions into the ER membrane. 
Such a mechanism could not explain, however, why ER tail-anchored proteins 
insert into the ER membrane selectively and not also into all other membranes 
in the cell. It is now clear that a specialized targeting machinery is involved that 
is fueled by ATP hydrolysis (Figure 12–46). Although the components and details 
differ, this post-translational targeting mechanism is conceptually similar to 
SRP-dependent protein targeting (see Figure 12–37).

Not all tail-anchored proteins are inserted into the ER, however. Some pro-
teins contain a C-terminal membrane anchor that contains additional sorting 
information that directs the protein to mitochondria or peroxisomes. How these 
proteins are sorted there remains unknown.

Translocated Polypeptide Chains Fold and Assemble in the Lumen 
of the Rough ER
Many of the proteins in the lumen of the ER are in transit, en route to other desti-
nations; others, however, normally reside there and are present at high concen-
trations. These ER resident proteins contain an ER retention signal of four amino 
acids at their C-terminus that is responsible for retaining the protein in the ER (see 
Table 12–3. p. 648; discussed in Chapter 13). Some of these proteins function as 
catalysts that help the many proteins that are translocated into the ER lumen to 
fold and assemble correctly. 

One important ER resident protein is protein disulfide isomerase (PDI), which 
catalyzes the oxidation of free sulfhydryl (SH) groups on cysteines to form disul-
fide (S–S) bonds. Almost all cysteines in protein domains exposed to either the 
extracellular space or the lumen of organelles in the secretory and endocytic 
pathways are disulfide-bonded. By contrast, disulfide bonds form only very rarely 
in domains exposed to the cytosol, because of the reducing environment there. 
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Figure 12–46 The insertion mechanism 
for tail-anchored proteins. In this post-
translational pathway for the insertion of 
tail-anchored ER membrane proteins, a 
soluble pre-targeting complex captures 
the hydrophobic C-terminal α helix after 
it emerges from the ribosomal exit tunnel 
and loads it onto the Get3 ATPase. The 
resulting complex is targeted to the ER 
membrane by interaction with the Get1–
Get2 receptor complex that functions as 
a membrane protein insertion machine. 
After Get3 hydrolyzes its bound ATP, the 
tail-anchored protein is released from 
the receptor and inserted into the ER 
membrane. ADP release and renewed ATP 
binding recycles Get3 back to the cytosol. 
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Another ER resident protein is the chaperone protein BiP. We have already dis-
cussed how BiP pulls proteins post-translationally into the ER through the Sec61 
ER translocator. Like other chaperones (discussed in Chapter 13), BiP recognizes 
incorrectly folded proteins, as well as protein subunits that have not yet assem-
bled into their final oligomeric complexes. It does so by binding to exposed amino 
acid sequences that would normally be buried in the interior of correctly folded 
or assembled polypeptide chains. An example of a BiP-binding site is a stretch 
of alternating hydrophobic and hydrophilic amino acids that would normally be 
buried in a β sheet with its hydrophobic side oriented towards the hydrophobic 
core of the folded protein. The bound BiP both prevents the protein from aggre-
gating and helps keep it in the ER (and thus out of the Golgi apparatus and later 
parts of the secretory pathway). Like some other members of the hsp70 family of 
chaperone proteins, which bind unfolded proteins and facilitate their import into 
mitochondria and chloroplasts, BiP hydrolyzes ATP to shuttle between high- and 
low-affinity binding states, which allow it to hold on to and let go of its substrate 
proteins in a dynamic cycle.

Most Proteins Synthesized in the Rough ER Are Glycosylated by 
the Addition of a Common N-Linked Oligosaccharide
The covalent addition of oligosaccharides to proteins is one of the major bio-
synthetic functions of the ER. About half of the soluble and membrane-bound 
proteins that are processed in the ER—including those destined for transport to 
the Golgi apparatus, lysosomes, plasma membrane, or extracellular space—are  
glycoproteins that are modified in this way. Many proteins in the cytosol and 
nucleus are also glycosylated, but not with oligosaccharides: they carry a much 
simpler sugar modification, in which a single N-acetylglucosamine group is 
added to a serine or threonine of the protein.

During the most common form of protein glycosylation in the ER, a pre-
formed precursor oligosaccharide (composed of N-acetylglucosamine, mannose, 
and glucose, and containing a total of 14 sugars) is transferred en bloc to proteins. 
Because this oligosaccharide is transferred to the side-chain NH2 group of an 
asparagine in the protein, it is said to be N-linked or asparagine-linked (Figure 
12–47A). The transfer is catalyzed by a membrane-bound enzyme complex, an 
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Figure 12–47 N-linked protein 
glycosylation in the rough ER. (A) Almost 
as soon as a polypeptide chain enters 
the ER lumen, it is glycosylated on target 
asparagine amino acids. The precursor 
oligosaccharide (shown in color) is attached 
only to asparagines in the sequences Asn-
X-Ser and Asn-X-Thr (where X is any amino 
acid except proline). These sequences 
occur much less frequently in glycoproteins 
than in nonglycosylated cytosolic proteins. 
Evidently there has been selective 
pressure against these sequences during 
protein evolution, presumably because 
glycosylation at too many sites would 
interfere with protein folding. The five sugars 
in the gray box form the core region of this 
oligosaccharide. For many glycoproteins, 
only the core sugars survive the extensive 
oligosaccharide trimming that takes place 
in the Golgi apparatus. (B) The precursor 
oligosaccharide is transferred from a 
dolichol lipid anchor to the asparagine as 
an intact unit in a reaction catalyzed by a 
transmembrane oligosaccharyl transferase 
enzyme. One copy of this enzyme is 
associated with each protein translocator 
in the ER membrane. (The translocator is 
not shown.) Oligosaccharyl transferase 
contains 13 transmembrane α helices and 
a large ER lumenal domain that contains 
its substrate-binding sites. The asparagine 
binds a tunnel that penetrates the enzyme 
interior. There, the amino group of the 
asparagine is twisted out of the plane that 
stabilizes the otherwise poorly reactive 
amide bond, activating it for reaction with 
the dolichol–oligosaccharide. The structure 
shown is of a prokaryotic homolog that 
closely resembles the catalytic subunit of 
the eukaryotic oligosaccharyl transferase. 
(PDB code: 3RCE.)
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oligosaccharyl transferase, which has its active site exposed on the lumenal side 
of the ER membrane; this explains why cytosolic proteins are not glycosylated 
in this way. A special lipid molecule called dolichol anchors the precursor oli-
gosaccharide in the ER membrane. The precursor oligosaccharide is transferred 
to the target asparagine in a single enzymatic step immediately after that amino 
acid has reached the ER lumen during protein translocation. The precursor oligo-
saccharide is linked to the dolichol lipid by a high-energy pyrophosphate bond, 
which provides the activation energy that drives the glycosylation reaction (Figure 
12–47B). One copy of oligosaccharyl transferase is associated with each protein 
translocator, allowing it to scan and glycosylate the incoming polypeptide chains 
efficiently. 

The precursor oligosaccharide is built up sugar by sugar on the mem-
brane-bound dolichol lipid and is then transferred to a protein. The sugars are 
first activated in the cytosol by the formation of nucleotide (UDP or GDP)-sugar 
intermediates, which then donate their sugar (directly or indirectly) to the lipid in 
an orderly sequence. Part way through this process, the lipid-linked oligosaccha-
ride is flipped, with the help of a transporter, from the cytosolic to the lumenal 
side of the ER membrane (Figure 12–48).

All of the diversity of the N-linked oligosaccharide structures on mature glyco-
proteins results from the later modification of the original precursor oligosaccha-
ride. While still in the ER, three glucoses (see Figure 12–47) and one mannose are 
quickly removed from the oligosaccharides of most glycoproteins. We shall return 
to the importance of glucose trimming shortly. This oligosaccharide “trimming,” 
or “processing,” continues in the Golgi apparatus, as we discuss in Chapter 13.

The N-linked oligosaccharides are by far the most common oligosaccharides, 
being found on 90% of all glycoproteins. Less frequently, oligosaccharides are 
linked to the hydroxyl group on the side chain of a serine, threonine, or hydroxy-
lysine amino acid. A first sugar of these O-linked oligosaccharides is added in the 
ER and the oligosaccharide is then further extended in the Golgi apparatus (see 
Figure 13–32).
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Figure 12–48 Synthesis of the lipid-
linked precursor oligosaccharide 
in the rough ER membrane. The 
oligosaccharide is assembled sugar by 
sugar onto the carrier lipid dolichol (a 
polyisoprenoid; see Panel 2–5, pp. 98–99). 
Dolichol is long and very hydrophobic: its 
22 five-carbon units can span the thickness 
of a lipid bilayer more than three times, so 
that the attached oligosaccharide is firmly 
anchored in the membrane. The first sugar 
is linked to dolichol by a pyrophosphate 
bridge. This high-energy bond activates 
the oligosaccharide for its eventual transfer 
from the lipid to an asparagine side chain 
of a growing polypeptide on the lumenal 
side of the rough ER. As indicated, the 
synthesis of the oligosaccharide starts on 
the cytosolic side of the ER membrane 
and continues on the lumenal face after 
the (Man)5(GlcNAc)2 lipid intermediate is 
flipped across the bilayer by a transporter 
(which is not shown). All the subsequent 
glycosyl transfer reactions on the lumenal 
side of the ER involve transfers from 
dolichol-P-glucose and dolichol-P-
mannose; these activated, lipid-linked 
monosaccharides are synthesized from 
dolichol phosphate and UDP-glucose or 
GDP-mannose (as appropriate) on the 
cytosolic side of the ER and are then 
flipped across the ER membrane. GlcNAc 
= N-acetylglucosamine; Man = mannose;  
Glc = glucose.
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Oligosaccharides Are Used as Tags to Mark the State of Protein 
Folding
It has long been debated why glycosylation is such a common modification of pro-
teins that enter the ER. One particularly puzzling observation has been that some 
proteins require N-linked glycosylation for proper folding in the ER, yet the precise 
location of the oligosaccharides attached to the protein’s surface does not seem to 
matter. A clue to the role of glycosylation in protein folding came from studies of 
two ER chaperone proteins, which are called calnexin and calreticulin because 
they require Ca2+ for their activities. These chaperones are carbohydrate-binding 
proteins, or lectins, which bind to oligosaccharides on incompletely folded pro-
teins and retain them in the ER. Like other chaperones, they prevent incompletely 
folded proteins from irreversibly aggregating. Both calnexin and calreticulin also 
promote the association of incompletely folded proteins with another ER chaper-
one, which binds to cysteines that have not yet formed disulfide bonds.

Calnexin and calreticulin recognize N-linked oligosaccharides that contain 
a single terminal glucose, and they therefore bind proteins only after two of the 
three glucoses on the precursor oligosaccharide have been removed during glu-
cose trimming by ER glucosidases. When the third glucose has been removed, the 
glycoprotein dissociates from its chaperone and can leave the ER.

How, then, do calnexin and calreticulin distinguish properly folded from 
incompletely folded proteins? The answer lies in yet another ER enzyme, a glu-
cosyl transferase that keeps adding a glucose to those oligosaccharides that have 
lost their last glucose. It adds the glucose, however, only to oligosaccharides that 
are attached to unfolded proteins. Thus, an unfolded protein undergoes continu-
ous cycles of glucose trimming (by glucosidase) and glucose addition (by gluco-
syl transferase), maintaining an affinity for calnexin and calreticulin until it has 
achieved its fully folded state (Figure 12–49).

Improperly Folded Proteins Are Exported from the ER and 
Degraded in the Cytosol
Despite all the help from chaperones, many protein molecules (more than 80% 
for some proteins) translocated into the ER fail to achieve their properly folded 
or oligomeric state. Such proteins are exported from the ER back into the cyto-
sol, where they are degraded in proteasomes (discussed in Chapter 6). In many 
ways, the mechanism of retrotranslocation is similar to other post-translational 
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Figure 12–49 The role of N-linked 
glycosylation in ER protein folding. 
The ER-membrane-bound chaperone 
protein calnexin binds to incompletely 
folded proteins containing one terminal 
glucose on N-linked oligosaccharides, 
trapping the protein in the ER. Removal 
of the terminal glucose by a glucosidase 
releases the protein from calnexin. A 
glucosyl transferase is the crucial enzyme 
that determines whether the protein is 
folded properly or not: if the protein is still 
incompletely folded, the enzyme transfers 
a new glucose from UDP-glucose to 
the N-linked oligosaccharide, renewing 
the protein’s affinity for calnexin and 
retaining it in the ER. The cycle repeats 
until the protein has folded completely. 
Calreticulin functions similarly, except that 
it is a soluble ER resident protein. Another 
ER chaperone, ERp57 (not shown), 
collaborates with calnexin and calreticulin 
in retaining an incompletely folded protein 
in the ER. ERp57 recognizes free sulfhydryl 
groups, which are a sign of incomplete 
disulfide bond formation. 
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modes of translocation. For example, like translocation into mitochondria or 
chloroplasts, chaperone proteins are necessary to keep the polypeptide chain in 
an unfolded state prior to and during translocation. Similarly, a source of energy is 
required to provide directionality to the transport and to pull the protein into the 
cytosol. Finally, a translocator is necessary.

Selecting proteins from the ER for degradation is a challenging process: mis-
folded proteins or unassembled protein subunits should be degraded, but folding 
intermediates of newly made proteins should not. Help in making this distinction 
comes from the N-linked oligosaccharides, which serve as timers that measure 
how long a protein has spent in the ER. The slow trimming of a particular man-
nose on the core oligosaccharide tree by an enzyme (a mannosidase) in the ER 
creates a new oligosaccharide structure that ER-lumenal lectins of the retrotrans-
location apparatus recognize. Proteins that fold and exit from the ER faster than 
the mannosidase can remove its target mannose therefore escape degradation. 

In addition to the lectins in the ER that recognize the oligosaccharides, chap-
erones and protein disulfide isomerases (enzymes mentioned earlier that catalyze 
the formation and breakage of S–S bonds) associate with the proteins that must be 
degraded. The chaperones prevent the unfolded proteins from aggregating, and 
the disulfide isomerases break disulfide bonds that may have formed incorrectly, 
so that a linear polypeptide chain can be translocated back into the cytosol.

Multiple translocator complexes move different proteins from the ER mem-
brane or lumen into the cytosol. A common feature is that they each contain an 
E3 ubiquitin ligase enzyme, which attaches polyubiquitin tags to the unfolded 
proteins as they emerge into the cytosol, marking them for destruction. Fueled 
by the energy derived from ATP hydrolysis, a hexomeric ATPase of the family of 
AAA-ATPases (see Figure 6–85) pulls the unfolded protein through the transloca-
tor into the cytosol. An N-glycanase removes its oligosaccharide chains en bloc. 
Guided by its ubiquitin tag, the deglycosylated polypeptide is rapidly fed into pro-
teasomes, where it is degraded (Figure 12–50).

Misfolded Proteins in the ER Activate an Unfolded Protein 
Response
Cells carefully monitor the amount of misfolded protein in various compart-
ments. An accumulation of misfolded proteins in the cytosol, for example, triggers 
a heat-shock response (discussed in Chapter 6), which stimulates the transcription 
of genes encoding cytosolic chaperones that help to refold the proteins. Similarly, 
an accumulation of misfolded proteins in the ER triggers an unfolded protein 
response, which includes an increased transcription of genes encoding proteins 
involved in retrotranslocation and protein degradation in the cytosol, ER chaper-
ones, and many other proteins that help to increase the protein-folding capacity 
of the ER.
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Figure 12–50 The export and 
degradation of misfolded ER proteins. 
Misfolded soluble proteins in the ER 
lumen are recognized and targeted to a 
translocator complex in the ER membrane. 
They first interact in the ER lumen with 
chaperones, disulfide isomerases, and 
lectins. They are then exported into 
the cytosol through the translocator. 
In the cytosol, they are ubiquitylated, 
deglycosylated, and degraded in 
proteasomes. Misfolded membrane 
proteins follow a similar pathway but  
use a different translocator. 
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How do misfolded proteins in the ER signal to the nucleus? There are three par-
allel pathways that execute the unfolded protein response (Figure 12–51A). The 
first pathway, which was initially discovered in yeast cells, is particularly remark-
able. Misfolded proteins in the ER activate a transmembrane protein kinase in the 
ER, called IRE1, which causes the kinase to oligomerize and phosphorylate itself. 
(Some cell-surface receptor kinases in the plasma membrane are activated in a 
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Figure 12–51 The unfolded protein 
response. (A) By three parallel intracellular 
signaling pathways, the accumulation of 
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to the nucleus to activate the transcription 
of genes that encode proteins that help 
the cell cope with misfolded proteins in 
the ER. (B) Regulated RNA splicing is a 
key regulatory switch in pathway 1 of the 
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similar way, as discussed in Chapter 15.) The oligomerization and autophosphor-
ylation of IRE1 activates an endoribonuclease domain in the cytosolic portion 
of the same molecule, which cleaves a specific cytosolic mRNA molecule at two 
positions, excising an intron. (This is a unique exception to the rule that introns 
are spliced out while the RNA is still in the nucleus.) The separated exons are then 
joined by an RNA ligase, generating a spliced mRNA, which is translated to pro-
duce an active transcription regulatory protein. This protein activates the tran-
scription of genes encoding the proteins that help mediate the unfolded protein 
response (Figure 12–51B). 

Misfolded proteins also activate a second transmembrane kinase in the ER, 
PERK, which inhibits a translation initiation factor by phosphorylating it, thereby 
reducing the production of new proteins throughout the cell. One consequence 
of the reduction in protein synthesis is to reduce the flux of proteins into the ER, 
thereby reducing the load of proteins that need to be folded there. Some pro-
teins, however, are preferentially translated when translation initiation factors are 
scarce (discussed in Chapter 7, p. 424), and one of these is a transcription regula-
tor that helps activate the transcription of the genes encoding proteins active in 
the unfolded protein response.

Finally, a third transcription regulator, ATF6, is initially synthesized as a trans-
membrane ER protein. Because it is embedded in the ER membrane, it cannot 
activate the transcription of genes in the nucleus. When misfolded proteins accu-
mulate in the ER, however, the ATF6 protein is transported to the Golgi appara-
tus, where it encounters proteases that cleave off its cytosolic domain, which can 
now migrate to the nucleus and help activate the transcription of genes encoding 
proteins involved in the unfolded protein response. (This mechanism is similar 
to that described in Figure 12–16 for activation of the transcription regulator that 
controls cholesterol biosynthesis.) The relative importance of each of these three 
pathways in the unfolded protein response differs in different cell types, enabling 
each cell type to tailor the unfolded protein response to its particular needs.

Some Membrane Proteins Acquire a Covalently Attached 
Glycosylphosphatidylinositol (GPI) Anchor 
As discussed in Chapter 10, several cytosolic enzymes catalyze the covalent addi-
tion of a single fatty acid chain or prenyl group to selected proteins. The attached 
lipids help direct and attach these proteins to cell membranes. A related process 
is catalyzed by ER enzymes that covalently attach a glycosylphosphatidylinosi-
tol (GPI) anchor to the C-terminus of some membrane proteins destined for the 
plasma membrane. This linkage forms in the lumen of the ER, where, at the same 
time, the transmembrane segment of the protein is cleaved off (Figure 12–52). A 
large number of plasma membrane proteins are modified in this way. Since they 
are attached to the exterior of the plasma membrane only by their GPI anchors, 
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Figure 12–52 The attachment of a GPI 
anchor to a protein in the ER. GPI-
anchored proteins are targeted to the 
ER membrane by an N-terminal signal 
sequence (not shown), which is removed 
(see Figure 12–42). Immediately after 
the completion of protein synthesis, the 
precursor protein remains anchored in the 
ER membrane by a hydrophobic C-terminal 
sequence of 15–20 amino acids; the rest of 
the protein is in the ER lumen. Within less 
than a minute, an enzyme in the ER cuts 
the protein free from its membrane-bound 
C-terminus and simultaneously attaches 
the new C-terminus to an amino group 
on a preassembled GPI intermediate. The 
sugar chain contains an inositol attached to 
the lipid from which the GPI anchor derives 
its name. It is followed by a glucosamine 
and three mannoses. The terminal 
mannose links to a phosphoethanolamine 
that provides the amino group to attach 
the protein. The signal that specifies 
this modification is contained within the 
hydrophobic C-terminal sequence and 
a few amino acids adjacent to it on the 
lumenal side of the ER membrane; if this 
signal is added to other proteins, they too 
become modified in this way. Because 
of the covalently linked lipid anchor, the 
protein remains membrane-bound, with all 
of its amino acids exposed initially on the 
lumenal side of the ER and eventually on 
the exterior of the plasma membrane.
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they can in principle be released from cells in soluble form in response to signals 
that activate a specific phospholipase in the plasma membrane. Trypanosome 
parasites, for example, use this mechanism to shed their coat of GPI-anchored 
surface proteins when attacked by the immune system. GPI anchors may also be 
used to direct plasma membrane proteins into lipid rafts and thus segregate the 
proteins from other membrane proteins (see Figure 10–13).

The ER Assembles Most Lipid Bilayers 
The ER membrane is the site of synthesis of nearly all of the cell’s major classes 
of lipids, including both phospholipids and cholesterol, required for the produc-
tion of new cell membranes. The major phospholipid made is phosphatidylcho-
line, which can be formed in three steps from choline, two fatty acids, and glycerol 
phosphate (Figure 12–53). Each step is catalyzed by enzymes in the ER mem-
brane, which have their active sites facing the cytosol, where all of the required 
metabolites are found. Thus, phospholipid synthesis occurs exclusively in the 
cytosolic leaflet of the ER membrane. Because fatty acids are not soluble in water, 
they are shepherded from their sites of synthesis to the ER by a fatty acid binding 
protein in the cytosol. After arrival in the ER membrane and activation with CoA, 
acyl transferases successively add two fatty acids to glycerol phosphate to produce 
phosphatidic acid. Phosphatidic acid is sufficiently water-insoluble to remain in 
the lipid bilayer; it cannot be extracted from the bilayer by the fatty acid binding 
proteins. It is therefore this first step that enlarges the ER lipid bilayer. The later 
steps determine the head group of a newly formed lipid molecule and therefore 
the chemical nature of the bilayer, but they do not result in net membrane growth. 
The two other major membrane phospholipids—phosphatidylethanolamine and 
phosphatidylserine (see Figure 10–3)—as well as the minor phospholipid phos-
phatidylinositol (PI), are all synthesized in this way.

Because phospholipid synthesis takes place in the cytosolic leaflet of the ER 
lipid bilayer, there needs to be a mechanism that transfers some of the newly 
formed phospholipid molecules to the lumenal leaflet of the bilayer. In synthetic 
lipid bilayers, lipids do not “flip-flop” in this way (see Figure 10–10). In the ER, 
however, phospholipids equilibrate across the membrane within minutes, which 
is almost 100,000 times faster than can be accounted for by spontaneous “flip-
flop.” This rapid trans-bilayer movement is mediated by a poorly characterized 
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phospholipid translocator called a scramblase, which nonselectively equilibrates 
phospholipids between the two leaflets of the lipid bilayer (Figure 12–54). Thus, 
the different types of phospholipids are thought to be equally distributed between 
the two leaflets of the ER membrane. 

The plasma membrane contains a different type of phospholipid translocator 
that belongs to the family of P-type pumps (discussed in Chapter 11). These flip-
pases specifically recognize those phospholipids that contain free amino groups 
in their head groups (phosphatidylserine and phosphatidylethanolamine—see 
Figure 10–3) and transfers them from the extracellular to the cytosolic leaflet, 
using the energy of ATP hydrolysis. The plasma membrane therefore has a highly 
asymmetric phospholipid composition, which is actively maintained by the flip-
pases (see Figure 10–15). The plasma membrane also contains a scramblase but, 
in contrast to the ER scramblase, which is always active, the plasma membrane 
enzyme is regulated and only activated in some situations, such as in apoptosis 
and in activated platelets, where it acts to abolish the lipid bilayer asymmetry; the 
resulting exposure of phosphatidylserine on the surface of apoptotic cells serves 
as a signal for phagocytic cells to ingest and degrade the dead cell. 

The ER also produces cholesterol and ceramide (Figure 12–55). Ceramide is 
made by condensing the amino acid serine with a fatty acid to form the amino 
alcohol sphingosine (see Figure 10–3); a second fatty acid is then covalently added 
to form ceramide. The ceramide is exported to the Golgi apparatus, where it serves 
as a precursor for the synthesis of two types of lipids: oligosaccharide chains are 
added to form glycosphingolipids (glycolipids; see Figure 10–16), and phospho-
choline head groups are transferred from phosphatidylcholine to other ceramide 
molecules to form sphingomyelin (discussed in Chapter 10). Thus, both glycolip-
ids and sphingomyelin are produced relatively late in the process of membrane 
synthesis. Because they are produced by enzymes that have their active sites 
exposed to the Golgi lumen, they are found exclusively in the noncytosolic leaflet 
of the lipid bilayers that contain them.

Figure 12–54 The role of phospholipid 
translocators in lipid bilayer synthesis. 
(A) Because new lipid molecules are 
added only to the cytosolic half of the ER 
membrane bilayer and lipid molecules 
do not flip spontaneously from one 
monolayer to the other, a transmembrane 
phospholipid translocator (called a 
scramblase) is required to transfer lipid 
molecules from the cytosolic half to 
the lumenal half so that the membrane 
grows as a bilayer. The scramblase is not 
specific for particular phospholipid head 
groups and therefore equilibrates the 
different phospholipids between the two 
monolayers. (B) Fueled by ATP hydrolysis, a 
head-group-specific flippase in the plasma 
membrane actively flips phosphatidylserine 
and phosphatidylethanolamine directionally 
from the extracellular to the cytosolic leaflet, 
creating the characteristically asymmetric 
lipid bilayer of the plasma membrane of 
animal cells (see Figure 10–15).
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As discussed in Chapter 13, the plasma membrane and the membranes of the 
Golgi apparatus, lysosomes, and endosomes all form part of a membrane system 
that communicates with the ER by means of transport vesicles, which transfer 
both proteins and lipids. Mitochondria and plastids, however, do not belong to 
this system, and they therefore require different mechanisms to import proteins 
and lipids for growth. We have already seen that they import most of their proteins 
from the cytosol. Although mitochondria modify some of the lipids they import, 
they do not synthesize lipids de novo; instead, their lipids have to be imported 
from the ER, either directly or indirectly by way of other cell membranes. In either 
case, special mechanisms are required for the transfer.

The details of how lipid distribution between different membranes is catalyzed 
and regulated are not known. Water-soluble carrier proteins called phospholipid 
exchange proteins (or phospholipid transfer proteins) are thought to transfer indi-
vidual phospholipid molecules between membranes, functioning much like fatty 
acid binding proteins that shepherd fatty acids through the cytosol (see Figure 
12–54). In addition, mitochondria are often seen in close juxtaposition to ER 
membranes in electron micrographs, and specific junction complexes have been 
identified that hold the ER and outer mitochondrial membrane in close proxim-
ity. It is thought that these junction complexes provide specific contact-depen-
dent lipid transfer mechanisms that operate between these adjacent membranes.

Summary
The extensive ER network serves as a factory for the production of almost all of the 
cell’s lipids. In addition, a major portion of the cell’s protein synthesis occurs on the 
cytosolic surface of the rough ER: virtually all proteins destined for secretion or for 
the ER itself, the Golgi apparatus, the lysosomes, the endosomes, and the plasma 
membrane are first imported into the ER from the cytosol. In the ER lumen, the 
proteins fold and oligomerize, disulfide bonds are formed, and N-linked oligosac-
charides are added. The pattern of N-linked glycosylation is used to indicate the 
extent of protein folding, so that proteins leave the ER only when they are prop-
erly folded. Proteins that do not fold or oligomerize correctly are translocated back 
into the cytosol, where they are deglycosylated, polyubiquitylated, and degraded in 
proteasomes. If misfolded proteins accumulate in excess in the ER, they trigger an 
unfolded protein response, which activates appropriate genes in the nucleus to help 
the ER cope.

Only proteins that carry a special ER signal sequence are imported into the ER. 
The signal sequence is recognized by a signal-recognition particle (SRP), which 
binds both the growing polypeptide chain and the ribosome and directs them to a 
receptor protein on the cytosolic surface of the rough ER membrane. This binding 
to the ER membrane initiates the translocation process that threads a loop of poly-
peptide chain across the ER membrane through the hydrophilic pore of a protein 
translocator.

Soluble proteins—destined for the ER lumen, for secretion, or for transfer to the 
lumen of other organelles—pass completely into the ER lumen. Transmembrane 
proteins destined for the ER or for other cell membranes are translocated part 
way across the ER membrane and remain anchored there by one or more mem-
brane-spanning α-helical segments in their polypeptide chains. These hydropho-
bic portions of the protein can act either as start-transfer or stop-transfer signals 
during the translocation process. When a polypeptide contains multiple, alternat-
ing start-transfer and stop-transfer signals, it will pass back and forth across the 
bilayer multiple times as a multipass transmembrane protein.

The asymmetry of protein insertion and glycosylation in the ER establishes the 
sidedness of the membranes of all the other organelles that the ER supplies with 
membrane proteins.

THE ENDOPLASMIC RETICULUM

What we don’t know

• How do nuclear import receptors 
negotiate the tangled gel-like interior of 
a nuclear pore complex so efficiently?

• Is the nuclear pore complex a 
rigid structure or can it expand and 
contract, depending on the cargo 
transported?

• Sequence comparisons show that 
signal sequences for an individual 
protein such as insulin are quite 
conserved across species, much 
more so than would be expected 
from our current understanding that 
all that matters for their function are 
general structural features such as 
hydrophobicity. What other functions 
might signal sequences have that 
could account for their evolutionary 
sequence conservation? 

• How are polyribosomes on the 
endoplasmic reticulum membrane 
arranged so that the next initiating 
ribosome will find an unoccupied 
translocator?

• Why does the signal-recognition 
particle have an indispensable RNA 
subunit?
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Problems

Which statements are true? Explain why or why not.

12–1	 Like the lumen of the ER, the interior of the nucleus 
is topologically equivalent to the outside of the cell.

12–2	 ER-bound and free ribosomes, which are structur-
ally and functionally identical, differ only in the proteins 
they happen to be making at a particular time.

12–3	 To avoid the inevitable collisions that would occur 
if two-way traffic through a single pore were allowed, 
nuclear pore complexes are specialized so that some 
mediate import while others mediate export.

12–4	 Peroxisomes are found in only a few specialized 
types of eukaryotic cell.

Discuss the following problems.

12–5	 What is the fate of a protein with no sorting signal?

12–6	 The rough ER is the site of synthesis of many classes 
of membrane proteins. Some of these proteins remain in 
the ER, whereas others are sorted to compartments such 
as the Golgi apparatus, lysosomes, and the plasma mem-
brane. One measure of the difficulty of the sorting prob-
lem is the degree of “purification” that must be achieved 
during transport from the ER. Are proteins bound for the 
plasma membrane common or rare among all ER mem-
brane proteins? 
	 A few simple considerations allow one to answer 
this question. In a typical growing cell that is dividing once 
every 24 hours, the equivalent of one new plasma mem-
brane must transit the ER every day. If the ER membrane 
is 20 times the area of a plasma membrane, what is the 
ratio of plasma membrane proteins to other membrane 
proteins in the ER? (Assume that all proteins on their way 
to the plasma membrane remain in the ER for 30 minutes 
on average before exiting, and that the ratio of proteins to 
lipids in the ER and plasma membranes is the same.)

12–7	 Before nuclear pore complexes were well under-
stood, it was unclear whether nuclear proteins diffused 
passively into the nucleus and accumulated there by bind-
ing to residents of the nucleus such as chromosomes, or 
whether they were actively imported and accumulated 
regardless of their affinity for nuclear components.
	 A classic experiment that addressed this prob-
lem used several forms of radioactive nucleoplasmin, 
which is a large pentameric protein involved in chromatin 
assembly. In this experiment, either the intact protein or 
the nucleoplasmin heads, tails, or heads with a single tail 
were injected into the cytoplasm of a frog oocyte or into 
the nucleus (Figure Q12–1). All forms of nucleoplasmin, 
except heads, accumulated in the nucleus when injected 
into the cytoplasm, and all forms were retained in the 
nucleus when injected there.
A.	 What portion of the nucleoplasmin molecule is 
responsible for localization in the nucleus?

B.	 How do these experiments distinguish between 
active transport, in which a nuclear localization signal trig-
gers transport by the nuclear pore complex, and passive 
diffusion, in which a binding site for a nuclear component 
allows accumulation in the nucleus?

12–8	 Assuming that 32 million histone octamers are 
required to package the human genome, how many his-
tone molecules must be transported per second per 
nuclear pore complex in cells whose nuclei contain 3000 
nuclear pores and are dividing once per day?

12–9	 The nuclear pore complex (NPC) creates a barrier 
to the free exchange of molecules between the nucleus and 
cytosol, but in a way that remains mysterious. In yeast, for 
example, the central pore of the NPC has a diameter of 35 
nm and is 30 nm long, which is somewhat smaller than its 
vertebrate counterpart. Even so, it is large enough to accom-
modate virtually all components of the cytosol. Yet the pore 
allows passive diffusion of molecules only up to about 40 
kd; entry of anything larger requires help from a nuclear 
import receptor. Selective permeability is controlled by pro-
tein components of the NPC that have unstructured, polar 
tails extending into the central pore. These tails are charac-
terized by periodic repeats of the hydrophobic amino acids 
phenylalanine (F) and glycine (G).
	 At high enough concentration (~50 mM), the 
FG-repeat domains of these proteins can form a gel, with 
a meshwork of interactions between the hydrophobic FG 
repeats (Figure Q12–2A). These gels allow passive diffu-
sion of small molecules, but they prevent entry of larger 
proteins such as the fluorescent protein mCherry fused 
to maltose binding protein (MBP) (Figure Q12–2B). (The 
fusion to MBP makes mCherry too large to enter the 
nucleus by passive diffusion.) However, if the nuclear 
import receptor, importin, is fused to a similar protein, 
MBP-GFP, the importin-MBP-GFP fusion readily enters 
the gel (Figure Q12–2B). 

Figure Q12–1 Cellular 
location of injected 
nucleoplasmin and 
nucleoplasmin 
components 
(Problem 12–7). 
Schematic diagrams 
of autoradiographs 
show the cytoplasm 
and nucleus with 
the location of 
nucleoplasmin indicated 
by the red areas.

nucleoplasmin
preparation

intact

tails only

one tail

heads only

nuclear
injection

cytoplasmic
injection

Problems p12.04/12.05
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A.	 FG-repeats only form gels in vitro at relatively high 
concentration (50 mM). Is this concentration reasonable 
for FG repeats in the NPC core? In yeast, there are about 
5000 FG-repeats in each NPC. Given the dimensions of the 
yeast nuclear pore (35  nm diameter and 30  nm length), 
calculate the concentration of FG-repeats in the cylindri-
cal volume of the pore. Is this concentration comparable 
to the one used in vitro?
B.	 A second question is whether the diffusion of 
importin-MBP-GFP through the FG-repeat gel is fast 
enough to account for the efficient flow of materials 
between the nucleus and cytosol. From experiments of 
the type shown in Figure Q12–2B, the diffusion coefficient 
(D) of importin-MBP-GFP through the FG-repeat gel was 
determined to be about 0.1 μm2/s. The equation for diffu-
sion is t = x2/2D, where t is time and x is distance. Calcu-
late the time it would take importin-MBP-GFP to diffuse 
through a yeast nuclear pore (30 nm) if the pore consisted 
of a gel of FG-repeats. Does this time seem fast enough for 
the needs of a eukaryotic cell?

12–10	 Components of the TIM complexes, the multi-
subunit protein translocators in the mitochondrial inner 
membrane, are much less abundant than those of the TOM 

complex. They were initially identified using a genetic 
trick. The yeast Ura3 gene, whose product is an enzyme 
that is normally located in the cytosol where it is essential 
for synthesis of uracil, was modified so that the protein 
carried an import signal for the mitochondrial matrix. 
A population of cells carrying the modified Ura3 gene in 
place of the normal gene was then grown in the absence 
of uracil. Most cells died, but the rare cells that grew were 
shown to be defective for mitochondrial import. Explain 
how this selection identifies cells with defects in compo-
nents required for import into the mitochondrial matrix. 
Why don’t normal cells with the modified Ura3 gene grow 
in the absence of uracil? Why do cells that are defective for 
mitochondrial import grow in the absence of uracil?

12–11	 If the enzyme dihydrofolate reductase (DHFR), 
which is normally located in the cytosol, is engineered to 
carry a mitochondrial targeting sequence at its N-terminus, 
it is efficiently imported into mitochondria. If the modified 
DHFR is first incubated with methotrexate, which binds 
tightly to the active site, the enzyme remains in the cyto-
sol. How do you suppose that the binding of methotrexate 
interferes with mitochondrial import?

12–12	 Why do mitochondria need a special translocator 
to import proteins across the outer membrane, when the 
membrane already has large pores formed by porins?

12–13	 Examine the multipass transmembrane protein 
shown in Figure Q12–3. What would you predict would 
be the effect of converting the first hydrophobic trans-
membrane segment to a hydrophilic segment? Sketch the 
arrangement of the modified protein in the ER membrane.

12–14	 All new phospholipids are added to the cytosolic 
leaflet of the ER membrane, yet the ER membrane has a 
symmetrical distribution of different phospholipids in its 
two leaflets. By contrast, the plasma membrane, which 
receives all its membrane components ultimately from the 
ER, has a very asymmetrical distribution of phospholipids 
in the two leaflets of its lipid bilayer. How is the symmetry 
generated in the ER membrane, and how is the asymmetry 
generated and maintained in the plasma membrane?

Problems p12.24/12.19
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Figure Q12–3 Arrangement of a multipass transmembrane protein 
in the ER membrane (Problem 12–13). Blue hexagons represent 
covalently attached oligosaccharides. The positions of positively and 
negatively charged amino acids flanking the second transmembrane 
segment are shown.

Figure Q12–2 FG-repeat gel and influx of proteins into the nucleus 
(Problem 12–9). (A) Cartoon of the meshwork (gel) formed by pairwise 
interactions between hydrophobic FG repeats. For FG-repeats 
separated by 17 amino acids, as is typical, the mesh formed by 
extended amino acid side chains would correspond to about 4 nm on 
a side, which would be large enough to account for the characteristic 
passive diffusion of proteins through nuclear pores. (B) Diffusion of 
MBP-mCherry and importin-MBP-GFP into a gel of FG-repeats. In each 
group, the solution is shown at left and the gel at right. The bright areas 
indicate regions that contain the fluorescent proteins.Problems p12.201/12.04
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